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This Letter presents the maximum achievable stability and purity that can be obtained in a two-level
system with both dephasing and population relaxation processes by using homodyne-mediated feedback
control. An analytic formula giving the optimal amplitudes of the driving and feedback for the steady-
state is also presented. Experimental examples are used to show the importance of controlling the
dephasing process.
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1. Introduction

A central issue in quantum information processing is quan-
tum coherence, i.e., how long a quantum state survives without
decay allowing robust quantum computation [1–3]. However, real
quantum systems will unavoidably be influenced by surrounding
environments which gives rise to decoherence processes [4]. One
type of decoherence process is called population relaxation and
the other is called dephasing. Population relaxation is a dissipa-
tive decoherence process. It is described by a changing of popu-
lation inversion σz and results in energy loss. The dephasing pro-
cess is a non-dissipative process. It comes from a randomization
of the phases of the atomic wave functions by thermal and vac-
uum fluctuations in the electromagnetic field, causing the decay
of the overlap of the upper and lower state wave function [5,6].
The population of a two-level atom will not be changed during
the dephasing process, but the phase of the atomic dipole will be
randomized [7], or more precisely the off-diagonal density matrix
elements are destroyed. As a result, the density matrix becomes a
statistical mixture and thus does not display any coherence effects.

Current approaches to decoherence control can be categorized
as: quantum error correction (QEC) [8–10], decoherence-free sub-
space (DFS) [11–15], dynamical decoupling, and quantum feedback
[16,17].

The QEC approach actively corrects quantum computational er-
rors. It accomplishes this by using proper codewords to encode
the state to be protected into carefully selected subspaces of the
joint Hilbert space of the system and a number of ancillary sys-
tems [8–10]. The main limitation of the QEC approach for removing
decoherence is the large number of extra qubits required to store
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the system state. For example, correcting all possible single qubit
errors requires at least five qubits [18]. The number of extra qubits
increases rapidly if fault tolerant error correction is realized [13].

A DFS is a passive quantum error avoiding method, in which
no measurements or recovery operations are performed to detect
and correct errors [11–15]. The basic idea is to encode the in-
formation into a region of the Hilbert space where the quantum
information of the system is inaccessible by the environment. Ex-
periments successfully implementing the DFS approach have been
realized in linear optics [19,20], trapped ions [21] and nuclear mag-
netic resonance [22,23]. The DFS approach is only possible if the
system-environment interaction has certain symmetries. Unfortu-
nately, not all quantum systems have such a region in their Hilbert
space. It is theoretically known that DFS can be utilized with QEC
[24], the quantum Zeno effect [25] and dynamical decoupling [26].

The dynamical decoupling scheme uses repetitive pulses to re-
move some of the undesirable system-environment interactions
to suppress decoherence [26–33]. This technique can significantly
slow down decoherence, but is not able to remove the system en-
tropy.

The quantum feedback approach represents the earliest method
for decoherence control [16,17,34]. In this approach, the quan-
tum system of interest is subjected to continuous photodetection
and the information obtained from these measurements is used
to achieve control of quantum dynamics and for the preparation
of desired quantum states. Manipulating quantum systems such
as atoms or trapped ions by feedback is not only of fundamen-
tal theoretical interest in quantum mechanics, but also opens up
possibilities to generate various interesting quantum states in the
laboratory [35,36].

In this Letter we examine how well homodyne-mediated feed-
back can control a two-level system accounting for an additional
dephasing process. We have previously investigated feedback con-
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trol of the population relaxation process in a two-level system
to achieve qubit stability [34]. However, for practical experiments
it is often necessary to account for an additional non-dissipative
dephasing process. The dephasing process may arise from elastic
collisions in an atomic vapor, elastic phonon scattering in a solid,
or photon shot noise in the measurement field [5,7,37], etc. The
analysis of homodyne-mediated feedback control in which both
dephasing and population relaxation processes are present thus
makes our previous model more closely resemble an actual ex-
perimental realization.

Similar problems have been considered in a noisy qubit using
tracking control method to maintain coherence [38]. A feedback
stabilization of eigenstates of a continuously measured observable
has been investigated in a higher-dimensional system [39]. The sta-
bilization of two nonorthogonal states in a two-level system in
a discreet time domain feedback scheme has also been recently
studied [40].

This Letter shows that both the stability and purity of a two-
level system is sensitive to the additional dephasing effect. This
Letter also shows that feedback can stabilize the system state in
both the upper and lower halves of the Bloch sphere in the pres-
ence of both dephasing and population relaxation. The stability of
the optimal states in the upper and lower halves of the Bloch
sphere are affected symmetrically by the dephasing rate. In this
Letter an analytic solution for the steady-state is obtained. This
leads to an analytic formula giving the optimal values of driving
and feedback amplitude to maximize both stability and purity. The
concluding section of this Letter discusses some experiments that
may benefit from these results.

2. Feedback stabilization in the presence of dephasing
and population relaxation

The system to be considered is shown in Fig. 1. The approach
used in this investigation is called “Quantum Trajectories” [5,6]. We
are interested in how well feedback can counter balance the effect
of population relaxation with the addition of a dephasing process.
We measure how well feedback works by finding the most stable
pure state.

We model the dephasing process by considering the population
inversion σz = |e〉〈e| − |g〉〈g| coupled to a high temperature heat
bath or vacuum fluctuations in the electromagnetic field, which
can be described by an additional Hamiltonian [7]

Hz = σz

√
Γ ξ(t), (1)

where Γ stands for the non-dissipative dephasing rate which will
cause phase randomization. The term ξ(t) represents Gaussian
white noise [34],

By using the same method presented in Ref. [34], the homo-
dyne-mediated feedback master equation including the non-
dissipative dephasing process becomes

ρ̇ = Lρ + K
(√

γ σρ + ρ
√

γ σ †) + 1

2
K2ρ (2)

where

L = −i[ασy,ρ] + γ D[σ ]ρ + Γ D[σz]ρ. (3)

The Liouville superoperator K gives reversible evolution with

Kρ = −i[F ,ρ]. (4)

In Eqs. (2)–(4) ρ describes the system state, γ is the decay rate,
σ = |e〉〈g| is the system lowering operator and the atom is driven
by a resonant classical driving field with Rabi frequency 2α. The

Fig. 1. Diagram of the experimental apparatus. The laser beam is split to produce
both the local oscillator β and the field α0 which is modulated using the measured
homodyne photocurrent I(t). The modulated beam, with amplitude proportional to
α + λI(t), drives an atom at the center of the parabolic mirror. Here λ is the feed-
back amplitude. The fluorescence thus collected is subject to homodyne detection
using the local oscillator, and gives rise to the homodyne photocurrent I(t).

Lindblad superoperator is defined as D[A]B ≡ AB A† − {A† A, B}/2
[41]. The feedback Hamiltonian is given by Hfb = λσy I(t), where
F = λσy is the feedback operator and λ feedback amplitude. I(t) is
the photocurrent given by:

I(t) = √
γ 〈σx〉c(t) + ξ(t). (5)

The subscript c means conditioned.
The reason for choosing a homodyne-mediated measurement

rather than a direct photodetection is because there exists an in-
terference effect between beam b and the local oscillator β in
the homodyne-mediated measurement, and it is this interference
effect that leads to the deterministic part of the homodyne pho-
tocurrent proportional to xc = 〈σx〉c, where σx is the system x
quadrature information. Obtaining system x quadrature informa-
tion is essential for controlling the dynamics of the system state
in the x–z plane by feedback. In the case of direct photodetection,
the x quadrature information is not available.

In Eq. (2), feedback can be turned off by setting F = 0. In the
steady-state limit, i.e., ρ̇ = 0, the following linear equations can be
obtained from Eq. (2) using Bloch representation.
⎧⎪⎨
⎪⎩

(− γ
4 − √

γ λ − Γ − λ2 − λ2)xs + (α)zs = 0,

(− γ
4 − Γ )ys + (

√
γ + λ)zs = (−√

γ ),

(−α)x + (λ)ys + (− γ
2 − √

γ λ − λ2)zs = (
γ
2 + √

γ λ).

(6)

The steady-state solution can be found analytically as follows

xs = αB

D
, ys = α2 A + C

D
, zs = E

D
, (7)

where

A = −√
γ ,

B =
(

γ

2
+ √

γ λ

)(
γ

4
+ Γ

)
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2
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,
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