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We investigate the directional property of photons emitted spontaneously from a partially-excited many-
atom system. There exists a strong directional correlation between the emitted photons and the photons
that have been absorbed by laser excitation and among all emitted photons themselves. Such a strong
correlation arises from entanglement of W -type generated in the atomic system during the process of
absorption and emission.
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1. Introduction

In this Letter we investigate the directional property of pho-
tons emitted spontaneously from a many-atom system. While the
directional property of spontaneously emitted photons is an old
issue extensively investigated in the past, especially in connection
with the problem of superradiance [1–3], two papers appeared re-
cently in which this issue was viewed from a new angle, i.e., from
the viewpoint of entanglement. Scully et al. [4] considered a situa-
tion in which a many-atom system is illuminated by a laser pulse
and one photon is observed to be absorbed by the atoms. As no
information on which atom has absorbed the photon is available,
the atoms are in an entangled state. They showed that the pho-
ton emitted from the atomic system in such an entangled state is
directed along the absorbed photon, even though the atoms have
no dipole moment. They see this result as an interesting conse-
quence of many particle entanglement in a dense medium. Eberly
[5] considered a many-atom system in a product state. He stud-
ied a situation in which a collection of atoms are independently
and identically prepared with each atom associated with an equal
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and small nonzero probability to be in its excited state. He showed
that the emitted photon is still directed along the absorbed photon.
He concluded that whether the atoms are in a highly quantum-
mechanical entangled state or in a nearly classical product state
makes no difference.

The purpose of this work is to clarify the role of quantum en-
tanglement in a many-atom spontaneous emission process. A typ-
ical physical situation we have in mind is depicted in Fig. 1.
A pulse of wave vector �k0 illuminates a large number N (N � 1)
of atoms, each prepared initially in its ground state |g〉. After the
pulse passes through the atoms, it arrives at the detector D, which
counts the number of photons and tells how many photons have
been absorbed by the atoms. We assume that each of the N atoms
is equally likely to absorb a photon and that the number n of the
absorbed photons (or the number of atoms which absorb the pho-
tons and are driven to the excited state |e〉) is less than the total
number N of the atoms (n < N). The state of the atoms after the
exciting pulse has left the atoms is then given by

|ψ〉 = 1√
N Cn

∑
( j1 j2··· jn)

ei�k0·(�R j1 +�R j2 +···+�R jn )
∣∣e j1 e j2 · · · e jn gN−n〉

, (1)

where the summation is to be performed over all possible
N Cn (N Cn = N!

n!(N−n)! ) ways of selecting n out of N atoms, �R j refers
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Fig. 1. Preparation of the many-atom entangled state. N atoms (N � 1) all in their
ground state distributed randomly in space are illuminated by a pulse of wave vec-
tor �k0. All atoms are equally likely to absorb a photon each. The pulse arrives at the
detector D after interaction with the atoms. The detector D counts the number of
photons absorbed by the atoms.

to the position of the jth atom, and |e j1 e j2 · · · e jn gN−n〉 indicates
that the j1th, j2th, . . ., and jnth atoms are in their excited state
|e〉, and the remaining (N − n) atoms are in their ground state |g〉.
The initial state (1) characterizes the situation we denote by (N,n)

which signifies that there are N atoms in the system having n
units of excitation transferred from the exciting pulse. A total of n
photons will be emitted from the N-atom system in state (1), and
we ask along which direction these n photons will be emitted. We
ask, in particular, whether these emitted photons are directionally
correlated with the absorbed photons. Throughout our discussion
we assume that the atoms are distributed randomly in a region
large compared with the wavelength of the emitted radiation.

We note that, as long as 0 < n < N , the state |ψ〉 of Eq. (1)
is given in a linear superposition of states consisting of n excited
atoms and (N − n) unexcited atoms. In other words, it represents
an entangled state of the type called the W state [6]. This partic-
ular type of entangled state is generated in the atomic system of
Fig. 1, because one does not know which n atoms out of the N
atoms have absorbed the photons from the pulse.

2. Two atoms

As a preliminary to the many-atom problem, we consider the
case (N = 2,n = 1) of two atoms having one unit of excitation
transferred from an exciting pulse of wave vector �k0. Taking N = 2
and n = 1 in Eq. (1), we have, for the initial atomic state,

|ψ〉 = 1√
2

(
ei�k0·�R1 |e1 g2〉 + ei�k0·�R2 |g1e2〉

)
. (2)

One photon will be emitted from the two-atom system in state (2).
Denoting the wave vector of the emitted photon as �k, the final
state of the system of the two atoms and the radiation field is
written as |g1 g21�k〉. The wave function of the system at an arbi-
trary time t > 0 is given by

∣∣ψ(t)
〉 = α1(t)e−iωat |e1 g20〉 + α2(t)e−iωat |g1e20〉

+
∫

d3�k α�k(t)e−iωkt |g1 g21�k〉, (3)

where ωa is the atomic angular frequency (ωa = Ee−E g
h̄ ) and ωk is

the angular frequency of the emitted radiation (ωk = c|�k| = ck). We
have inserted “0” to the atomic states |e1 g2〉 and |g1e2〉 in Eq. (3)
to emphasize that, when the atoms are in state |e1 g2〉 or |g1e2〉,
there is no photon in the radiation field. In writing Eq. (3), we
have made the Weisskopf–Wigner approximation [7] limiting our
consideration only to the states which can be reached from the
initial state in accordance with the principle that the creation and
annihilation of a photon are accompanied by the downward and
upward transitions, respectively, of the atom. This approximation is
equivalent to the rotating wave approximation. Substituting Eq. (3)
into the time-dependent Schrödinger equation, we obtain

i
dα1(t)

dt
=

∫
d3�k g∗

�k ei�k·�R1 ei(ωa−ωk)tα�k(t), (4a)

i
dα2(t)

dt
=

∫
d3�k g∗

�k ei�k·�R2 ei(ωa−ωk)tα�k(t), (4b)

i
dα�k(t)

dt
= g�ke−i�k·�R1 e−i(ωa−ωk)tα1(t)

+ g�ke−i�k·�R2 e−i(ωa−ωk)tα2(t), (4c)

where g�k is the atom–field dipole coupling constant given by

g�k = 1

h̄
〈g1�k|H ′|e0〉, (5)

and H ′ is the interaction Hamiltonian (H ′ = − e
m

�A · �P ). Eqs. (4)
can be solved for the probability amplitudes α1(t), α2(t) and

α�k(t), subject to the initial condition α1(0) = 1√
2

ei�k0·�R1 , α2(0) =
1√
2

ei�k0·�R2 , α�k(0) = 0, using the technique of Laplace transform or

equivalent methods. For detailed procedure, we refer the read-
ers to Refs. [2,8–10]. From the solution of Eqs. (4), we obtain the
probability P�k(t → ∞) = |α�k(t → ∞)|2 of having a photon of wave

vector �k in the radiation field long after the state (2) was prepared,
which reads

P�k(t → ∞) = |g�k|2ξk
{

1 + cos
[
(�k − �k0) · �R] + D�k

}
, (6)

where

D�k = γ 2
12

(ωa − ωk)
2 + γ 2

{
1 + cos

[
(�k + �k0) · �R]}

− 2γ12γ

(ωa − ωk)
2 + γ 2

[
cos(�k0 · �R) + cos(�k · �R)

]
, (7)

ξk is a real function depending on the magnitude but not on the
direction of �k, given as

ξk = (ωa − ωk)
2 + γ 2

[(ωa − ωk)
2 + (γ + γ12)2][(ωa − ωk)

2 + (γ − γ12)2] , (8)

γ is the amplitude decay rate of the excited state of a single iso-
lated atom, given by

γ = V

(2π)3

ω2
a

c3

∫
dΩk

[|g�k|2
]

k= ωa
c

, (9)

γ12 represents the part of the amplitude decay rate modified
due to the interaction between the two atoms, in such a way
that (γ + γ12) and (γ − γ12) are the decay rates of the symmet-
ric [ 1√

2
(|e1 g2〉 + |g1e2〉)] and antisymmetric [ 1√

2
(|e1 g2〉 − |g1e2〉)]

states, respectively,

γ12 = V

(2π)3

ω2
a

c3

∫
dΩk

[|g�k|2ei�k·�R]
k= ωa

c
, (10)

and �R = �R1 − �R2. The term D�k given by Eq. (7) represents “dy-
namical effects” arising from interaction between the two atoms,
i.e., effects due to repeated absorption and emission as the radi-
ation emitted from one atom can reach and excite the other. The
complicated but interesting situation in which R is smaller than
the radiation wavelength (kR � 1) and consequently these dynam-
ical effects play an important role has been treated in detail in
our earlier publication [11]. Here we limit ourselves to the situa-
tion where R is sufficiently large (kR � 1) that the contribution
from the dynamical effects is relatively small. This allows one to
look at the bare essence of the mechanism that determines the di-
rectional property of the spontaneously emitted photons without
complications arising from the direct atom–atom interaction.

In the limit kR � 1 (or equivalently γ12 � γ ), Eq. (6) becomes
[9,10,12]

P�k(∞) ∝ |g�k|2
{

1 + cos
[
(�k − �k0) · �R]}

, (11)
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