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Effect of pressure on melting and solidification of metal nanoparticles
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A thermodynamic model was developed to clarify the dependence of melting temperature on hydrostatic
pressure in the nanoscopic scale. It is based on the classic Clausius–Clapeyron relation and the size
dependence of the melting entropy. The melting of nanoparticles in matrix with coherent and incoherent
boundaries was also under consideration. It was shown that external hydrostatic pressure leads to the
appearance of extrema of the melting temperature that was considered as a function of the characteristic
size of nanoparticles.
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1. Introduction

Influence of pressure on phase transitions in nanoparticles has
long been known [1–5]. Both the decrease and the increase in the
melting point are possible with the presence of coherent border
between nanoparticles and a matrix [6,7]. If the nanoparticle’s bor-
der with the matrix is incoherent, it is also possible as raising or
lowering the melting temperature [3,4]. In the latter case, the in-
fluence of the matrix can be attributed to the presence or absence
of pressure that occurs because of differences in the coefficient of
thermal expansion of the matrix and nanoparticles [4,5]. Melting
of nanoparticles is usually described in macroscopical terms such
as a surface tension. Generally speaking, the surface tension is a
fitting parameter, since it depends on the characteristic size of
nanoparticles [9]. Therefore Lindemann’s criterion in the present
work is used for examining the melting of nanoparticles at a high
hydrostatic pressure, thus avoiding the use of fitting parameters.
The ability to use the Lindemann melting criterion for the study
of processes at high pressures confirmed in [10]. According to this
criterion, melting occurs at such temperature, Tm , at which root
mean square displacement,

√
σ 2, equals to the certain share, ξ , of

average distance between atoms, h. Thus the Lindemann melting
criterion is formulated as
√

σ 2 = ζh. (1)
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In order to reduce or eliminate a difference among distinct lat-
tices or coordination numbers, h is usually calculated by atom
volume via the equation V = πh3/6 [11]. With this definition of
h, ξ becomes almost a lattice-independent parameter.

2. Methodology

With the decrease of the characteristic size of nanoparticles,
increases the amplitude of the oscillations of atoms both in the
surface layer of nanoparticle and inside it. The value of σ 2 in
Eq. (1) is defined via the variational equation [12]:

σ 2(x + δx) − σ 2(x) = (α − 1)σ 2(x)δx, (2)

where α = σ 2
s /σ 2

b , σ 2
s and σ 2

b are a constant factor, the mean
square displacement of the equilibrium position of surface and
bulk atoms, respectively. Here x is a parameter of averaging, x =
ns/nb = r0/(r − r0),ns and nb are quantities of surface and bulk
atoms, accordingly, r0 is the parameter defined from a condition
ns = nb . In short, the relationship between h and r0 is given by
r0 = (3 − d)h [13]. For nanoparticles (d = 0) and nanowires (d = 1)
r is a radius, for thin films (d = 2) 2r is thickness of a film.
Based on Eq. (2) and the Lindemann melting criterion, Shi [12]
derived the formula for calculating the melting temperature of
nano-objects:

Tm(r) = Tm(∞)exp
[−(α − 1)(r/r0 − 1)−1]. (3)

It is convenient to introduce a parameter ζ by the relation ζ = r/r0
to scale the size of a nanoparticle in dimensionless units. Using ζ
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gives x = (ζ − 1)−1. The coefficient α can be calculated by the
formula [13]:

α = 2S vib

3R
+ 1, (4)

here Svib is a vibrational component of melting entropy of massive
solid, R is the ideal gas constant.

Eq. (2) makes it possible to examine continuous environment
with the mean square displacement, obtained from this equation,
instead of the nanoparticle taken separately [14]. Thus the exter-
nal pressure can be taken into account by using the Clausius–
Clapeyron relation:

dTm(p, ζ )

dp
= Tm(p, ζ )�V L S (p, ζ )

Hm(p, ζ )
, (5)

here p is the external pressure, Tm(p, ζ ) is the melting tempera-
ture of nanoparticle, �V L S(p, ζ ) is a change of the molar volume
at melting, Hm(p, ζ ) is the melting enthalpy. Since Hm(p, ζ ) =
Tm(p, ζ )Sm(p, ζ ), where Sm(p, ζ ) is the melting entropy, Eq. (5)
can be rewritten as

dTm(p, ζ )

dp
= �V L S(p, ζ )

Sm(p, ζ )
. (6)

The dependence of the melting entropy on the size of nanoparti-
cles is determined by the expression [13]:

Sm(p, ζ )/Sm(p,∞) = 1 − (ζ − 1)−1, (7)

where Sm(p,∞) is the melting entropy of a massive solid (r →
∞). It should be noted that when ζ < 2, the right-hand side of
Eq. (7) becomes negative, so the valid values have to satisfy the
condition ζ > 2. Thus, we will consider a continuous solid body,
whose atoms have the mean square displacement, determined by
Eq. (2), and the entropy of melting, represented by Eq. (7). Ac-
cordingly, in this model to account for the influence of exter-
nal pressure on the melting point will be used Eq. (7). In the
first approximation, we will assume that Sm(p, ζ ) ≈ Sm(ζ ) and
�V L S(p, ζ ) ≈ �V (p). Integrating both parts of Eq. (6) from p0 to
p and from Tm(p0, ζ ) to Tm(p, ζ ), accordingly, we will obtain:

Tm(p, ζ ) = Tm(p0, ζ ) + S−1
m (ζ )

p∫
p0

�V L S(p)dp. (8)

We investigate Tm(p, ζ ) to the presence of the extremum in the
isobaric process. Setting the first partial derivative ∂Tm(p, ζ )/∂ζ

to zero gives after the simple conversions:

T ′
m(p0, ζ ) = S ′

m(ζ )S−2
m (ζ )

p∫
p0

�V L S(p)dp. (9)

Here T ′
m(p0, ζ ) and S ′

m(ζ ) denote the derivatives of temperature
and melting entropy with respect to ζ . Furthermore, it is assumed
that always p > p0. Eq. (4) implies that T ′

m(p0, ζ ) is greater than
zero when α > 1, and less than zero when α < 1. As it follows
from Eq. (7), the derivative S ′

m(ζ ) is always greater than zero.
Therefore, in order to meet Eq. (9), the following inequalities must
be fulfilled:

p∫
p0

�V L S(p)dp > 0, if α > 1, (10)

p∫
p0

�V L S(p)dp < 0, if α < 1. (11)

For the metals usually �V L S(p) > 0, therefore can be realized the
relationship (10). Relationship (11) can be valid for the semimetals

of the type of bismuth and semiconductors, since the relationship
�V L S(p) < 0 usually is fulfilled for these materials. In order to
determine the form of extremum, we will obtain the second partial
derivative of Tm(p, ζ ) with respect to ζ :

T ′′
m(p, ζ ) = T ′′

m(p0, ζ ) + S−2
m (ζ )

(
2
(

S ′
m(ζ )

)2
S−1

m (ζ ) − S ′′
m(ζ )

)

×
p∫

p0

�V L S(p)dp. (12)

It is not difficult to establish that the second derivative T ′′
m(p0, ζ )

is negative with the fulfillment of condition

ζ > 1 + (α − 1)/2. (13)

As was accepted above, the value of the variable ζ cannot be less
than 2. From the other side, usually α � 2. Therefore inequality
(13) is always fulfilled and first term in Eq. (12) is negative. A sign
of integral

∫ p
p0

�V L S(p)dp defines the sign of the second term,
since the expression in parentheses always positive. Therefore, if
Eq. (9) and inequality (11) are fulfilled, there is extremum in the
form of the maximum. If relationships (9) and (10) are fulfilled,
then the right side of Eq. (12) consists of two terms which are op-
posite in sign. Therefore, the sign of this expression is defined by
a summand that dominates. The latter is defined by the physical
properties of nanoparticle.

3. Results and discussion

Fig. 1 presents the melting temperature dependence on the
characteristic size of nanoparticles for the two cases, corresponding
to relations (10) and (11). First case, which corresponds to con-
dition (10), is realized for the free nanoparticles of metals (solid
curve in Fig. 1). Embedded metal nanoparticles with α > 1 gives
the same dependence qualitatively. The molar volume increase
during the melting leads to the appearance of the minimum on
the dependence Tm = Tm(p, ζ ) (see Fig. 2). Thus, in the growth of
particles at constant pressure, they may melt first then again be-
come solid. The liberation of latent heat of fusion in the adiabatic
conditions can lead to an increase in the ambient temperature and,
thus, to the acceleration of the nanoparticles melting. If a nanopar-
ticle is located in the matrix, and the border is coherent, α can be
calculated by the formula [13]

α = [
(hM/hN )2Tm(∞)/T M(∞) + 1

]
/2, (14)

here indexes M and N denote the matrix and nanoparticles, re-
spectively. In fulfilling the conditions (hM/hN)2Tm(∞)/T M(∞) > 1,
α is greater than unity. In the opposite case, α < 1. Therefore, the
ratio (10) can be performed for free particles and nanoparticles in
the matrix (if α > 1). It gives a minimum of Tm (Fig. 1, solid curve;
Fig. 2). The ratio (11) is true only for nanoparticles in the matrix
(α < 1). It gives a maximum of Tm . The presence of maximum of
Tm can lead to retarding of the nanoparticles melting (see Fig. 1,
dashed curve). Naturally, if there is incoherent boundary between
the matrix and the particle, α is also greater than unit. It leads to
the absence of extremum (Fig. 3).

As an example, we will obtain the dependence of the melting
point of lead and of bismuth on a radius of nanoparticles. It is
necessary to note that during the melting the molar volume of
bismuth decreases by 3.7% and the molar volume of lead increases
by 3.7% [15]. At the same time, during melting of the alloy of the
eutectic composition, the change of its molar volume does not oc-
cur. Therefore its melting point does not depend on pressure. It
directly follows from the Clausius–Clapeyron relation that with an
increase in the pressure the melting point of bismuth decreases,
and the melting point of lead grows. In addition, Eqs. (6) and (7)
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