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It is shown that geometric phases and entanglement may fail to detect level crossings for two qubits
with XY interaction. The rotating magnetic field produces a magnetic monopole sphere like conducting
spheres in that only a ground state evolving adiabatically outside the sphere acquires a geometric phase.
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Energy is the most primary quantity determining the properties
of physical systems. When energy levels are crossing or avoided
crossing as system parameters vary, a quantum system exhibits
rich physics. For example, if two energy levels, initially separated,
become close but not crossing and then far away again, then
the non-adiabatic Landau–Zener transition between them takes
place [1]. In molecular systems, the conical intersection of adia-
batic electronic states play key role in radiationless chemical re-
action [2]. A quantum state traveling adiabatically around level
crossing points accumulates the geometric phase in addition to
the dynamical phase [3,4]. Berry provided a beautiful interpreta-
tion of the geometric phase as the magnetic flux due to magnetic
monopoles located at the level crossing points. A quantum phase
transition, a dramatic change in the ground state driven by param-
eters in the zero temperature, is associated with level crossings or
avoided crossings between the ground and exited energy levels [5].

When levels are crossings or avoided crossing as the param-
eters of a Hamiltonian varies, the corresponding quantum states
can change significantly. So, it is important to know what physical
quantities could be good indicators to level crossings or avoided
crossings. Recently, the relation between geometric phases, entan-
glement, and level crossings for the atomic Breit–Rabi Hamiltonian
has been investigated by Oh et al. [6]. The adiabatic geometric
phase is a direct way to detect level crossings because it is as-
sociated with level crossing or avoided crossing. The fidelity could
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be a good indicator to level crossings because it measures the dis-
tance between two quantum states. Also entanglement, referring
to quantum correlation between subsystems, could be a good in-
dicator to level crossings because entanglement measures tell us
whether a quantum state is separable or not.

In this Letter, we study a system of two qubits with the XY
type interaction as a minimal model showing the geometric phase,
the entanglement jump, and the abrupt change in the fidelity at
level crossings. It is demonstrated that entanglement jump may
fail to capture level crossings. The geometric phase is shown to
be zero for the glancing level crossings. Also it is shown that the
magnetic monopole charge producing the geometric phase is dis-
tributed on the surface of the sphere like a conducting sphere of
electric charges.

Let us consider a simple system of two qubits with the XY type
interaction. As shown later, it contains rich physics in spite of its
simplicity. The Hamiltonian of the system reads

H(λ,γ ) = − (1 + γ )
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where γ is an anisotropy factor, λ is an external magnetic field
in the z direction, and σα

i are the Pauli matrices of the ith qubit
with α = x, y, z. The Hamiltonian (1) is the simplest form of an
spin 1/2 XY chain in a transverse magnetic field (hereafter called
simply the XY model), which is exactly solvable [7] and becomes a
paradigmatic example in the study of quantum phase transitions.

The eigenvalues and eigenstates of Hamiltonian (1) can be eas-
ily obtained by rewriting (1) in the matrix form,
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Fig. 1. (Color online.) (a) Energy gap between the ground and first excited states as a
function of λ and γ for two qubits with XY type interaction. The level crossing (dark
line) takes places on the circle λ2 + γ 2 = 1. (b) The ground state phase diagram
of the XY model. P denotes the paramagnetic phase, F the ordered ferromagnetic
phase, and O the oscillatory phase [8].

H(λ,γ ) = −
⎛
⎜⎝

λ 0 0 γ
0 0 1 0
0 1 0 0
γ 0 0 −λ

⎞
⎟⎠ = Heven + Hodd. (2)

The Hamiltonian Heven = −
(

λ γ

γ −λ

)
is defined on the subspace

spanned by {|00〉, |11〉}. This looks like a Hamiltonian of a spin 1/2
in a magnetic field. It is easy to write down the eigenvalues and
eigenvectors of Heven

Ee± = ±
√

λ2 + γ 2, (3a)
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where tan θ ≡ γ /λ. On the other hand, the Hamiltonian Hodd =
−

(
0 1
1 0

)
defined on the subspace of {|01〉, |10〉} has the eigenvalues

Eo± = ±1 and the eigenvectors

∣∣Eo±
〉 = 1√

2

(|01〉 ∓ |10〉). (4)

Let us look at where the level crossings between the ground
and first exited states are located in the parameter space of γ and
λ. The condition of level crossing is Eo− = Ee− . As shown in Fig. 1,
this is just a circle

λ2 + γ 2 = 1. (5)

Surprisingly, this is identical to the disorder line of the XY model,
which separates the ordered oscillating phase in the region λ2 +
γ 2 < 1 from the ferromagnetic phase [8].

It is also remarkable that the ground state and the ground-
state energy of the XY model are similar in forms to Eqs. (3a) and
(3b), respectively. One may wonder why the phase diagram of two
qubits with XY type interaction looks like that of the XY model in
thermodynamic limit, as depicted in Fig. 1. This could be explained
by the fact that the ground state energy E0 of a system of N iden-
tical particles with at most two particle interaction can be writ-
ten as E0 = N

2

∑
i εi〈εi |D2|εi〉 [9], where D2 = tr3,...,N (|Ψ 〉〈Ψ |) is

the two-particle reduced density matrix derived from the ground
state |Ψ 〉 satisfying H|Ψ 〉 = E0|Ψ 〉. And the reduced Hamiltonian
K ≡ H1 + H2 + (N − 1)H12, derived from the full Hamiltonian
H = ∑N

i=1 Hi + ∑
i< j Hi j , has eigenvalues εi and eigenstates |εi〉.

The XY model can be mapped to an one-dimensional spinless
fermion system through the Jordan–Wigner transformation. Thus
it could be understood why the eigenvalues and eigenstates of
Hamiltonian (1) contain the partial information on the XY model
[10].

Fig. 2. (Color online.) (a) Concurrence C(|ψ0〉) of the ground state |ψ0〉 and (b) fi-
delity F between |E0−〉 and |ψ0〉 as a function of γ and λ.

Now, let us examine whether the entanglement is always a
good indicator to level crossings [11]. For a pure two-qubit state
|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 with |a|2 + |b|2 + |c|2 + |d|2 = 1,
a well-known entanglement measure is the concurrence C(|ψ〉) =
2|ad − bc|. For the ground state |ψ0〉 given by |Ee−〉 and |Eo−〉, it is
written as

C
(|ψ0〉

) =
{

sin θ, for γ 2 + λ2 > 1,

1, for γ 2 + λ2 < 1.
(6)

As shown in Fig. 2(a), the entanglement changes abruptly as γ and
λ passes across the circle, i.e., the disorder line. It seems that the
entanglement works well as an indicator to quantum phase tran-
sitions. However, along the γ axis, i.e., θ = π/2, the concurrence
does not change even if the ground state changes from |Eo−〉 to
|Ee−〉. This demonstrate that the entanglement measure may fail to
capture a level crossing which happens between the ground states
with same degrees of entanglement. As the number of particles
increase, the dimension of a sub-Hilbert space whose states have
the same degree of entanglement also increases. Thus it is not hard
to imagine a quantum phase transition which occurs between the
ground states with the same degree of entanglement. In this case,
the entanglement is not a good indicator to quantum phase tran-
sitions.

The fidelity F between two quantum states |ψ〉 and |φ〉, defined
by F ≡ |〈ψ |φ〉|2, is one of the useful measures of distance between
two quantum states. It could be a good indicator to level crossings
because the ground states before and after level crossings changes
abruptly [12]. It is simple to calculate the fidelity F = |〈Eo−|ψ0〉|2
between the ground state |ψ0(λ,γ )〉 and the reference state |E0−〉
as a function of γ and λ. As illustrated in Fig. 2(b), the fidelity
jumps on the circle.

Let us turn to the relation between geometric phases and level
crossings. The geometric phase of the XY model in connection with
quantum phase transitions has been study in Refs. [13–15] where
the degeneracy points are located on the XX line, i.e. along the
λ axis, of the XY model. In contrast, the system here has the de-
generacy points located on the circle. Let us rotate the Hamiltonian
about the λ axis by angle φ, H̃(λ,γ ,φ) = U †

z(φ)H(λ,γ )U z(φ) with
U z(φ) ≡ exp[−i φ

2 (σ z
1 + σ z

2 )]. It is easy to obtain the transformed
Hamiltonian

H̃(λ,γ ,φ) = −
⎛
⎜⎝

λ 0 0 γ e−i2φ

0 0 1 0
0 1 0 0

γ ei2φ 0 0 −λ

⎞
⎟⎠ . (7)

The comparison of Eqs. (2) and (7) shows two things, which gives
rise to interesting consequences. First, H̃odd is independent of an-
gle φ. Second, H̃even looks like that of a spin 1/2 particle in a
magnetic field

B =
√

λ2 + γ 2(sin θ cos 2φ, sin θ sin 2φ, cos θ). (8)
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