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We study the coherent exciton transport of continuous-time quantum walks (CTQWs) on Erdös–Rényi
networks. We numerically investigate the transition probability between two nodes of the networks, and
compare the classical and quantum transport efficiency on networks of different connectivity. In the long
time limiting, we find that there is a high probability to find the exciton at the initial node. We also
study how the network parameters affect such high return probability.
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1. Introduction

During the last few years, the coherent exciton dynamics in
quantum system has been extensively studied by both experimen-
tal and theoretical methods [1,2]. The dynamical behavior of such
process depends on the underlying structure of the system under
study. Most of previous studies on coherent exciton dynamics are
based on simple structures, for example, the line [3,4], cycles [5,6],
hypercube [7], Cayley tree [8], dendrimers [9], polymers [10] and
other regular networks with simple topology. To the best of our
knowledge, the dynamics of exciton on random network has not
received much attention [11].

In this Letter, we consider the coherent exciton transport on
random networks of Erdös–Rényi (ER). The coherent exciton dy-
namics is modeled by continuous-time quantum walks (CTQWs),
which is a quantum version of the classical random walk and
widely studied by various researchers to describe the relaxation
processes in complex systems [12,13]. In the mathematical litera-
ture, the ER random network is defined as follows [14,15]: Starting
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with N disconnected nodes, every pair of nodes is connected with
probability p (0 < p < 1) and multiple connections are prohibited.
The ER random network is one of the oldest and best studied mod-
els of networks, and possesses the considerable advantage of being
exactly solvable for many of its average properties in the limit of
large network size [16]. For instance, one interesting feature, which
was demonstrated in their original papers, is that the model shows
a phase transition with increasing p at which a giant component
forms [16,17]. An alternative and equivalent representation of the
ER random graph is to express the graph not in terms of p but
in terms of the average degree k̄ of the nodes, which is related to
the connection probability p as: k̄ = p(N −1) ≈ pN , where the last
approximate equality is hold for large N .

In the limit of large network, the degrees of ER random net-
work follow a Poisson distribution peaked at the average degree k̄.
In order to contrast the resemblance and difference of the trans-
port dynamics on networks with the same average degree, we
consider the coherent exciton transport on a configuration model
of random networks in which the degree k of each node equals
to the average degree k̄ (k̄ ∈ Integers) of the Erdös–Rényi net-
works. The method for generating the graph is as follows [18]:
one assigns each node k̄ (k̄ ∈ Integers) stubs—ends of edges emerg-
ing from the nodes, and then one chooses pairs of these stubs
uniformly at random and joins them together to make complete
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edges. When all stubs have been used up, the resulting graph is
a random member of the ensemble of graphs with the equal de-
gree [16,18]. The configuration model of random networks can also
be implemented by using the edge-interchanging algorithm, which
randomly interchange two existing edges while keep the degree
sequence unchanged [19,20]. The configuration model is one of the
most successful algorithms proposed for network formation, and
has been extensively used as a null model in contraposition to real
networks with the same degree distribution in biology, robustness,
epidemics spreading and other dynamical processes taking place
on complex networks [19,21,22]. Here, we adopt this idea to com-
pare the transport behavior on the two network models. As we
will show, although the ensembles of ER model and configuration
model have the same average number of connections, the trans-
port dynamics on the two network models are different.

The Letter is structured as follows. In the next section, we
briefly review the classical and quantum transport on networks
presented in Refs. [23,24]. In Section 3 we study the time evo-
lution of the ensemble averaged return probability on ER networks
with different parameters. Section 4 presents the efficiencies of the
classical and quantum-mechanical transport, and try to reveal how
the network parameters affect the transport efficiency. In Section 5,
we consider the distribution of the long time averaged transition
probabilities, and explore how the average return probability is
related to network parameters. In Section 6, we consider the trans-
port dynamics on extremely connected networks. Conclusions and
discussions are given in the last part, Section 7.

2. Transport on networks

The coherent exciton dynamics on a connected network is mod-
eled by the continuous-time quantum walks (CTQWs), which is
obtained by replacing the Hamiltonian of the system by the classi-
cal transfer matrix, H = −T [25]. The transfer matrix T relates to
the Laplace matrix by T = −γ A [8]. Here, for the sake of simplic-
ity, we assume the transmission rate γ for all connections equals
to 1. The Laplace matrix A has nondiagonal elements Aij equal
to −1 if nodes i and j are connected and 0 otherwise. The di-
agonal elements Aii equal to the number of total links connected
to node i, i.e., Aii equals to the degree of node i. The states | j〉
endowed with the nodes j of the network form a complete, or-
thonormalized basis set, which span the whole accessible Hilbert
space, i.e.,

∑
k |k〉〈k| = 1, 〈k| j〉 = δkj . The transport processes are

governed by the master equation or Schrödinger equation [8]. The
classical and quantum-mechanical transition probabilities to go
from the state | j〉 at time 0 to the state |k〉 at time t are given
by pk, j(t) = 〈k|e−t A | j〉 and πk, j(t) = |αk, j(t)|2 = |〈k|e−it H | j〉|2 [8],
respectively. Generally speaking, to calculate the transition prob-
abilities, all the eigenvalues and eigenvectors of the transfer op-
erator and Hamiltonian are required. We use En to represent the
nth eigenvalue of H and denote the orthonormalized eigenstate of
Hamiltonian by |qn〉, such that

∑
n |qn〉〈qn| = 1. The classical and

quantum transition probabilities between two nodes can be writ-
ten as

pk, j(t) =
∑

n

e−t En 〈k|qn〉〈qn| j〉, (1)

and

πk, j(t) = ∣∣αk, j(t)
∣∣2

=
∑
n,l

e−it(En−El)〈k|qn〉〈qn| j〉〈 j|ql〉〈ql|k〉. (2)

The above equations give the general expressions of the classical
and quantum transition probabilities, which explicitly depend on

the eigenvalues and eigenvectors of the transfer matrix or Hamil-
tonian. A particular feature related to the transport is the return
probability, which is the probability of finding the exciton at the
initial node. The transition probability depends on the specific
topology of the generated single network, therefore it is appro-
priate to consider its ensemble averages.

3. Averaged return probabilities

The average of the classical and quantum return probabilities
p j, j(t) and π j, j(t) over all nodes of the network are

p̄(t) = 1

N

∑
n

e−t En
∑

j

〈qn| j〉〈 j|qn〉

= 1

N

∑
n

e−t En , (3)

and

π̄ (t) = 1

N

∑
j

π j, j(t) = 1

N

∑
j

∣∣α j, j(t)
∣∣2

= 1

N

∑
n,l

e−it(En−El)
∑

j

〈 j|qn〉〈qn| j〉〈 j|ql〉〈ql| j〉. (4)

The classical p̄(t) is only dependent on the eigenvalues and decays
monotonically from p̄(0) = 1 to the equipartition limt→∞ p̄(t) =
1/N . The quantum π̄ (t) is dependent on the eigenvalues and
eigenvectors, which is cumbersome in the numerical calculations.
The above equations present the average of return probabilities
over all nodes on a specific single network. In order to reduce the
statistical fluctuation, we further average the return probabilities
over distinct single networks, i.e.,

〈
p̄(t)

〉 = 1

R

R∑
r=1

p̄r(t), (5)

and

〈
π̄ (t)

〉 = 1

R

R∑
r=1

π̄ r(t), (6)

where the index r denotes the rth generated ER network. Through-
out this Letter, we denote the average over network nodes by a bar
(e.g., k̄, p̄(t), π̄ (t), etc.), and the average over different realizations
by a bracket (e.g., 〈p̄(t)〉) while the actual values by undecorated
characters.

Fig. 1(a) shows the ensemble averaged return probabilities
〈p̄(t)〉 and 〈π̄ (t)〉 on ER networks of size N = 100 with average
degree k̄ = 10, 20 and 30. For classical transport 〈p̄(t)〉 reaches
the equipartition limt→∞ p̄(t) = 1/N very quickly. The curves at
intermediate times follow stretched exponential decay, which dif-
fers from power law decay (t−0.5) for the cycle graph [26]. The
exponential decay of 〈p̄(t)〉 indicates that a classical excitation will
quickly spread the whole network and occupy each node with
an uniform probability 1/N in a short time. It is evident that
the excitation reaches the equipartition 1/N more quickly on net-
works with more connections (compare the curves in Fig. 1(a)).
For quantum transport 〈π̄ (t)〉 also decays quickly in the interme-
diate times and then reach a final plateau. This plateau is larger
than the equipartitioned probability 1/N . After a careful exam-
ination, we find such plateau corresponds to a constant value
〈π̄ (t)〉 ≈ 0.065 ± 0.01. Increasing the average degree k̄ nearly does
not change this value (compare the curves in Fig. 1(a)). We note
that here 〈π̄ (t)〉 is smooth and does not display the oscillatory be-
havior, in contrast to the case for the cycle graph in which the
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