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Curvature-induced quantum behaviour on a helical nanotube
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We investigate the effect of curvature on the behaviour of a quantum particle bound to move on a
surface shaped as a helical tube. We derive and discuss the governing Schrödinger equation and the
corresponding quantum effective potential which is periodic and points to the helical configuration as
more energetically favorable as compared to the straight tube. The exhibited periodicity also leads to
energy band structure of pure geometrical origin.
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Recent developments in nanotechnology [1] made it possible
to grow quasi-two-dimensional surfaces of arbitrary shape where
quantum and curvature effects play a major role [2]. Examples
include single crystal NbSe3 Möbius strips [3], spherical CdSe–
ZnS core-shell quantum dots [4], Si nanowire, nanoribbon tran-
sistors [5], quantum waveguides [6] and nanotorus [7]. Several
publications [8–14] have treated the constrainment of quantum-
mechanical particles (with applications in, e.g. standard Schödinger
equation problems [15] and relativistic Dirac equation problems
[16,17]) to a two-dimensional surface since the original works by
Jensen and Koppe, da Costa [18–20]. Since two-dimensional sys-
tems are an a priori idealization it is reasonable to quantize before
constraining the particle to the nanotube. As a result a quantum
particle confined to a two-dimensional surface embedded in R

3

experiences a potential that is a function of the Mean and the
Gauss curvatures of the surface [19,20]. This curvature-induced
quantum potential is a geometric invariant, a property that led the
authors [21] to pose the inverse differential geometrical problem:
what curved surfaces produce prescribed curvature-induced poten-
tial.

Possible physical applications of the above include the geo-
metric interaction between defects and curvature in thin layers
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of superfluids, superconductors, and liquid crystals deposited on
curved surfaces [22]; the curvature of a semiconductor surface de-
termines also an interesting mechanism of spin–orbit interaction
of electrons [23]; a charged quantum particle trapped in a poten-
tial of quantum nature due to bending of an elastically deformable
thin tube travels without dissipation like a soliton [24]; the twist
of a strip plays a role of a magnetic field and is responsible for the
appearance of localized states and an effective transverse electric
field thus reminisces the quantum Hall effect [25].

Now let us turn our attention to the geometrical realization
of the helical tube. One can associate with a space curve �x(s) at
any point s along it a moving frame consisting of three vectors �t—
tangent, �n—normal and �b—binormal and evolving along the curve
according to the Frenet–Serret equations:

�̇t = �ω ∧�t, �̇b = �ω ∧ �b, �̇n = �ω ∧ �n, (1)

where �ω is the instantaneous angular velocity of the Frenet–Serret
frame where the arclength s plays the role of time. Hereafter the
dot denotes derivation with respect to the natural parameter s.
Here κ(s) and τ (s) are the curvature and torsion of the space
curve.

Since �ω has a component along �t we redefine the frame vectors

�N = cos θ(s)�n + sin θ(s)�b, �̇N = �Ω ∧ �N, (2)

�B = − sin θ(s)�n + cos θ(s)�b, �̇B = �Ω ∧ �B. (3)
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Fig. 1. The geometry of an infinite helical tube may be parametrized by two families
of space curves (see Eq. (5) and text).

We choose θ(s) so that �Ω has no component in the direction of �t.
A brief calculation yields [26]

θ(s) = −
s∫

s0

ds′ τ (s′). (4)

Now let us mount a disc D rigidly in the reference frame [31]
where �N and �B are at rest, i.e. the Fermi–Walker frame. The points
on the surface may be parametrized by

�X(s, φ) = �x(s) − ρ0
{

sin φ �B + cosφ �N}
. (5)

The two families of space curves weaving the above surface in
R

3 are the following. The first is a circle parametrized by the angle
φ and is actually the rim of the disc that is rigidly mounted to the
tangent �t(s) of the helical curve �x(s) at each point in space. The
tangent �t(s) coincides with the normal of the disk. The tip of the
vector in the disc from the central axis to the rim is denoted by
ρ0 cosφ �N + ρ0 sin φ �B. Its origin coincides with the helical space
curve �x(s). The second is given by the curves whose tangents are
passing through each point of the first family. Refer to Fig. 1 for
the visual expression of the above construction.

In this article we will study the properties of the Schrödinger
equation on the helical tube shown in Fig. 1.

The line element is

|d�X|2 = dϕ2 + h2 ds2, (6)

where

h(s, φ) = 1 + ρ0κ(s) cos

[
θ(s) + ϕ

ρ0

]
(7)

and

ϕ = ρ0φ (8)

has a dimension of length.
If we change the parametrization s → −s and ϕ → −ϕ this

would mean that we evolve the surface backward from a cer-
tain arbitrary point s0 of the infinite space line �x(s). The torsion
τ exhibits invariance τ (s) = τ (−s) and the surface element must
remain unchanged:

θ(−s) +
(

− ϕ

ρ0

)
→ −

[
θ(s) + ϕ

ρ0

]
, h(s) → h(−s).

Thus we show that the line element is indeed invariant∣∣d�X(s,ϕ)
∣∣2 = ∣∣d�X(−s,−ϕ)

∣∣2
.

From formulas (2) and (3) we see that at θ(s) = 0, that is at s =
0 if s0 = 0 (see (4)), we have the coincidence �N ≡ �n and �B ≡ �b. The
normal �n always points towards the axis around which the helix
is wound, i.e. it points inward. From (7) it is clear that h(0,0) =

Fig. 2. The cross-section of the nanotube in Fig. 1.

1 + ρ0κ(0) > 1 − ρ0κ(0) = h(0,π). The surface is stretched more
on the outside thus we have a natural choice of the origin (the
outer intersection of the ray through �n and the cross-section of
the tube) for the two families of curves (see Fig. 2).

Introducing the normal to the surface �ν from the Gauss triad
�ν = ∂ϕ �X ∧ ∂s �X|∂ϕ �X ∧ ∂s �X|−1/2 we can compute the linear Wein-
garten map [27](

∂ϕ �ν
∂s �ν

)
= W

(
∂ϕ �X
∂s �X

)
,

where W is the matrix realizing the map of the tangent space in
itself:

W =
(

ρ−1
0 0
0 κ(s) cos

[
θ(s) + ϕ

ρ0

]
h−1

)
. (9)

With the help of (9) we may compute

M = κ1 + κ2

2
= − tr(W )

2
, K = κ1κ2 = det(W ), (10)

the Mean and the Gauss curvatures of the surface respectively,
where κ1 and κ2 are the principal curvatures of the surface. They
are also the eigenvalues of the Weingarten matrix (9). Thus we ob-
tain

κ1 = 1

ρ0
, κ2 = κ(s) cos

[
θ(s) + ϕ

ρ0

]
h−1. (11)

Since we study the resulting Schrödinger equation for a particle
confined to move on that surface and following da Costa an effec-
tive potential appears in the Schrödinger equation which has the
following form:

V curv = − h̄2

2μ

(
M2 − K

)
, (12)

where μ is the effective particle’s mass, h̄ is Planck’s constant;
V curv depends on s and ϕ which appear as the generalized co-
ordinates on the surface; M and K are the Mean and the Gauss
curvatures given in (10). For the surface (5) we obtain

V curv(s,ϕ) = − h̄2

8μ

1

ρ2
0

1

h2
. (13)

From Eqs. (6) and (7) it follows that the surface is more stretched
on the outside, that is at ϕ = 0 (see Fig. 2), because h(0,0) >

h(0,π). The Heisenberg uncertainty principle states that a parti-
cle would have a lower energy where the line element is bigger.
Our expectation is that the probability to find a particle on the
outer rim of the surface is maximal. This guiding principle will al-
low us to interpret the appropriate effective Schrödinger equation
whose potential possesses the above property.

The Laplace–Beltrami operator (the quantum mechanical kinetic
term) in the coordinate system (5) can be written as follows:

−
s,ϕΨ = − 1

h2

∂2Ψ

∂s2
− ∂2Ψ

∂ϕ2
+ κ sin

(
θ + ϕ

ρ0

)
1

h

∂Ψ

∂ϕ

+ ρ0κ̇(s) cos

(
θ(s) + ϕ

ρ0

)
1

h3

∂Ψ

∂s

− ρ0θ̇ (s)κ(s) sin

(
θ(s) + ϕ

ρ0

)
1

h3

∂Ψ

∂s
. (14)



Download English Version:

https://daneshyari.com/en/article/1867689

Download Persian Version:

https://daneshyari.com/article/1867689

Daneshyari.com

https://daneshyari.com/en/article/1867689
https://daneshyari.com/article/1867689
https://daneshyari.com

