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Integrable motion of a vortex dipole in an axisymmetric flow
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The evolution of a self-propelling vortex dipole, embedded in an external nondivergent flow with
constant potential vorticity, is studied in an equivalent-barotropic model commonly used in geophysical,
astrophysical and plasma studies. In addition to the conservation of the Hamiltonian for an arbitrary
point vortex dipole, it is found that the angular momentum is also conserved when the external flow
is axisymmetric. This reduces the original four degrees of freedom to only two, so that the solution is
expressed in quadratures. In particular, the scattering of antisymmetric dipoles approaching from the
infinity is analyzed in the presence of an axisymmetric oceanic flow typical for the vicinity of isolated
seamounts.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Vortices have been recognized to be key elements in turbulent
fluid motion at a wide range of scales. The Coriolis force on rotat-
ing planets or the Lorentz force due to magnetic field in plasmas
makes large-scale flows anisotropic, quasi-two-dimensional (e.g.,
the horizontal velocity of oceanic currents is much larger than
vertical velocity). Coherent, long-lived vortices and jets emerge
naturally as a result of self-organization of turbulent motion ob-
served in such anisotropic media; they are well identified by the
wavelet transform and Okubo–Weiss criterion, e.g., [1]. Coherent
vortices are very efficient in trapping passive tracers for long times
and transporting them over anomalously large distances. For this
reason, mutual interaction of isolated vortices, their stability and
effects of background currents have been intensively studied in the
last decades as summarized in a number of reviews [2–6].

Signatures of well-separated, nearly circular or elliptical, mono-
polar vortices of both signs are common in geophysical flows. Two
vortices of opposite sign often form a self-propelling dipolar couple
which provides anomalous transport of scalar properties for espe-
cially long distances. They are easily excited in two-dimensional
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flows and they appear to be the universal outcome of an external
forcing possessing a nonzero linear momentum [7–9].

Many theoretical studies of vortex couples in geophysical flows
and plasmas have been essentially constrained by the β-effect
which allows the permanent form solutions only with zonal di-
rection of propagation. In the traditional quasigeostrophic approxi-
mation such steadily propagating solutions (modons as labelled by
Stern) have a dipolar structure with zero net angular momentum;
general solutions, including the axisymmetric rider, must also have
a vanishing angular momentum in order to be stationary, i.e., the
azimuthal velocity of the rider must change sign so that it is not
a monopole [3]. However, zonally propagating structures on the
β-plane will not lead to any meridional transport.

The variation of the intensity ratio of partners and corre-
sponding change in the path curvature of non-zonally propagat-
ing dipoles have been described approximately by the well-known
equation of the physical pendulum [10]. The numerical investi-
gation of the dynamics of equivalent-barotropic f -plane dipoles
which are steady solutions in the absence of the β-effect, demon-
strated that they remain coherent on a β-plane if dipoles are
strong enough [11]. Thus, the β-effect is not crucial for an intense
dipole when the swirling velocity in the partners are much higher
than the Rossby wave speed as observed in the upper ocean. The
curved path of the vortex couple resulting from different strengths
of companions may originate from the formation process and be
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affected only slightly by the β-effect as demonstrated in labora-
tory experiments [7].

The vortex evolution can be also strongly influenced by nonuni-
form background currents. However, the evolution of vortex
dipoles in external flows have received only little attention in lit-
erature. In particular, a horizontal strain would either accelerate
the dipole and form a head-tail structure, or separate the partners,
depending on the strain orientation [12]. Under the influence of
a radial flow from a point source (or sink), dipoles can separate,
converge or follow spiraling trajectories [13].

In the present study, we consider evolution of vortex couples in
a horizontally sheared nondivergent flow with constant potential
vorticity. Vortex couples are considered in the point vortex approx-
imation that allows to express the solution in quadratures for the
case of axisymmetric external flow and analyze different dynami-
cal regimes explicitly for an external flow typical for a topographic
circulation around an isolated seamount [14]. The mathematical
formulation is presented in Section 2. The solution in the general
form for arbitrary ratio of point vortex intensities is described in
Section 3. The behavior of a dipolar couple approaching from the
infinity is analyzed in Section 4. Discussion and conclusions are in
Section 5.

2. Mathematical formulation

2.1. Potential vorticity equation

At the lowest order of approximation, quasi-two-dimensional
dynamics of oceans, planetary atmospheres and of plasmas in a
magnetic field are governed by the conservation of a material in-
variant Q in an equivalent-barotropic model [5]

∂t Q + u∇ Q = 0. (1)

Here t is time normalized by a time scale T , (x, y) are hori-
zontal coordinates normalized by a horizontal scale L, u is the
flow velocity normalized by L/T . In geophysical fluid applications
such model describes a thin layer of homogeneous, incompressible
fluid, strongly constrained by ambient rotation and by stratifica-
tion, overlying an infinitely deep layer of fluid at rest [6]. Then
potential vorticity Q represents the ratio of absolute vorticity to
the layer thickness and it is conserved in each fluid parcel.

For small Rossby number and order unity Burger number, the
velocity is nondivergent in the leading order, so that the veloc-
ity and potential vorticity are expressed by the streamfunction,
ψ(x, y, t) normalized by L2/T

u(x, y, t) = k × ∇ψ, Q = ∇2ψ − S, (2)

where k is the vertical unit vector, and the term S is the vor-
tex stretching related to changes of the layer thickness either due
to localized topography S(x, y), or due to geostrophic adjustment
outside topography, where S = γ 2Ψ . Here γ = f L/C g , the grav-
ity wave speed, C g , and the Coriolis parameter, f , are assumed to
be constants. For the plasma case, ψ is proportional to the electro-
static potential normalized by Te/e (Te is the electron temperature,
e is the electric charge of the ion), C g = √

Te/mi is the ion sound
speed (mi is the ion mass), and f = ωic is the ion cyclotron fre-
quency [15].

In the limiting case of γ → 0, (1)–(2) describe pure two-
dimensional incompressible flows and they are valid for an arbi-
trary Rossby number. In both models, the domain is infinite in
horizontal directions.

2.2. Point vortex model

Following [16], we decompose the flow into a steady external
part, U = k × ∇Ψ , and a vortical part uV = u − U which corre-
sponds to localized vortices.

Assuming that the vortex dipole is represented by localized po-
tential vorticity anomalies with amplitudes κ1 and κ2, their self-
induced drift affected by the external flow is governed by the
following equations

dx1

dt
= −∂yΨ (x1, y1) + κ2(y2 − y1)ω(r12),

dy1

dt
= ∂xΨ (x1, y1) − κ2(x2 − x1)ω(r12), (3)

dx2

dt
= −∂yΨ (x2, y2) − κ1(y2 − y1)ω(r12),

dy2

dt
= ∂xΨ (x2, y2) + κ1(x2 − x1)ω(r12), (4)

where r2
i = x2

i + y2
i , r2

12 = (x1 − x2)
2 + (y1 − y2)

2, and ω(r) is the
rotation rate of a point vortex, either in the equivalent-barotropic
model, or in the 2D model:

ω(r) = dψ

r dr
, ψ = − 1

2π
K0(γ r), or ψ = 1

2π
ln r. (5)

The system of ODE (3)–(4) conserves the Hamiltonian H [2]:

H = Ψ (r1) + qΨ (r2) + qκ1ψ(r12) = const, (6)

where q = κ2/κ1 while the components of linear momentum and
the total angular momentum, M , evolve due to the external flow:

ẋ1 + qẋ2 = −∂yΨ (x1, y1) − q∂yΨ (x2, y2),

ẏ1 + q ẏ2 = ∂xΨ (x1, y1) + q∂xΨ (x2, y2), (7)

Ṁ = (y1∂x − x1∂y)Ψ (x1, y1) + q(y2∂x − x2∂y)Ψ (x2, y2),

2M = r2
1 + qr2

2. (8)

Therefore, analytical solutions for point vortex evolution in an ex-
ternal flow were found only in cases with additional symmetry
considered in [13].

As one can see from (8), the total angular momentum is con-
served M = const when the external flow is axisymmetric and
stationary on the f -plane,

U = −yΩ(r), V = xΩ(r), Ω = dΨ

r dr
, (9)

where Ω is the external rotation rate and r2 = x2 + y2.
Conservation of total angular momentum in this case, added to

the Hamiltonian conservation, allows a reduction from the original
four degrees of freedoms to only two and a general solution in
quadratures.

3. Motion of a vortex dipole in the general case

3.1. Simple case of constant external rotation rate

When Ω = const, the solution is obvious in coordinates rotating
with the angular rate Ω: the distance between partners is known
to remain constant r12 = const, while the center of the dipole de-
fined as xc = (x1 + x2)/2, yc = (y1 + y2)/2 moves along circular
trajectories with radius rq = r12(1 − q)/[2(1 + q)]. In particular,
equal vortices of the same sign (q = 1) rotate around each other
(rq = 0), while a dipole with opposite sign vortices (q = −1) prop-
agates uniformly (rq = ∞) with the speed U∞ = r12ω(r12).
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