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Abstract

In inhomogeneous environments, the correct expression of the diffusive flux is not always given by the Fick’s law I" = —DVn. The most general
hydrodynamic equation modelling diffusion is indeed the Fokker—Planck equation (FPE). The microscopic dynamics of each specific system may
affect the form of the FPE, either establishing connections between the diffusion and the convection term, as well as providing supplementary
terms. In particular, the Fick’s form for the diffusion equation may arise only in consequence of a specific kind of microscopic dynamics. It is also
shown how, in the presence of sharp inhomogeneities, even the hydrodynamic FPE limit may becomes inaccurate and mask some features of the

true solution, as computed from the Master equation.
© 2008 Elsevier B.V. All rights reserved.
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Introduction. The fluid modelling of the time- and space-
evolution of quantities within complex environments, whose
dynamics may only be treated on statistical grounds, is made
using the diffusion equation (DE) d;n = Da)%n. This phenom-
enological equation arises from two more fundamental equa-
tions: the continuity equation for n: 9;n = —9, I", and the Fick’s
law (or Fourier’s law) [1] I' = —Dd.n, where x and ¢ are
the spatial coordinate and the time, respectively; the diffusiv-
ity D is a constant dependent from the medium. A pedagogical
overview of Fick’s (Fourier’s) law and diffusion equation may
be found in [2].

The postulate of homogeneity may hold just as a first-order
approximation, whereas most systems must ultimately allow for
some degree of non-uniformity. Almost unavoidably, therefore,
one is faced with the question: how DE has to be generalized to
such systems. The exact answer to this question is of relevance
for a plethora of problems in practically any branch of natural
sciences: from physics, to chemistry, geology, biology, social
sciences, . ...

Heuristically, the difficulty related to the generalization of
DE may be understood as follows: an inhomogeneous environ-
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ment should make D position-dependent: D — D(x). There
are, however, several choices for I" that differ when D = D(x),
but that collapse to the same identical form when D is constant.
Therefore, the problem may be restated as: what is the correct
generalization of Fick’s law (provided that one exists) in inho-
mogeneous environments.

This subject appears repeatedly addressed in literature; how-
ever, it is difficult to find the explicit exposition of a gen-
eral solution. In Van Kampen’s book [3], it is argued that
one cannot decide a priori what the correct form for I is,
which rather depends upon the properties of the problem stud-
ied. Landsberg ([4] and references therein), points out that,
to some extent, it is a matter of convention, provided that
supplementary (convective) terms are added suitably. In other
terms, the definition of a diffusive and a convective flux is
not univocal, only the total flux is. The Letter providing the
clearest intuitive insight and at the same time detailed cal-
culations about what goes on in such situations is proba-
bly Schnitzer’s [S]. We mention also the papers [6,7], featur-
ing computer experiments and presenting further bibliography
about this subject. Papers [8—10] feature analytical and exper-
imental work, demonstrating that the straightforward general-
ization of Fick’s law I' = —D(x)dn(x) cannot hold in all
systems.
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In order to quantitatively address the issue, it is necessary to
deal with a reasonably accurate modelling of the dynamics at
the microscopic level: transport equations, thus, will emerge at
the level of large length scales. The tool we adopt is provided
by the Master equation (ME):

on(x,t)  n(x,1) n(x’',t)
a t(x) T(x')

ME (1) yields a coarse grained probabilistic description of a mi-
croscopic system driven by a Markov process, and can be visu-
alized as the continuity equation for the passive scalar quantity
n(x,t) (which, properly speaking, is a probability density) sub-
ject to transitions (“jumps”) modifying its state from x’ to x,
with probability p(x — x’, x’), and at a rate 1/7(x) (see chap-
ter 1 of [11]). Eq. (1) contains virtually all the solutions of the
transport problem, once the functions p and t are given. On the
other hand, it is often unpractical to deal directly with it, par-
ticularly in higher-dimensional problems. Therefore, and par-
ticularly if a clear-cut separation of scales exists in the problem
studied, it is customary to take its long-wavelength limit, which
washes out details at the finest scales and turns the integral
equation (1) into a famous differential equation: the Fokker—
Planck equation (FPE) (see, e.g., chapter 9 of [12]):

—l—/dx’p(x —x',x") (1)
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Within the ME formulation, all the physics is built into the func-
tions p and t. In the passage from ME to FPE, p and t are
packed into the diffusive and convective terms, D, U. There-
fore, the analytical expression of D, U, ultimately relies on
the constraints that the problem to be solved places on p, .
Is it possible, basing upon general considerations on the mi-
croscopic dynamics, to identify equivalent classes of systems,
that is, systems that lead to the same qualitative form of the
FPE? As we shall show later, the initial question advanced in
this Introduction is related to this point: the Fick’s form of the
diffusion equation is a particular limiting case of the FPE, that
arises when the microscopic dynamics fulfills a given symme-
try.

The purpose of this Letter is to provide a discussion about
this topic. Furthermore, we will address the broader issue of the
validity of the scale separation at the basis of the FPE. We will
show that, whenever, this hypothesis is not fulfilled, additional
terms to the FPE need to be considered.

From the Master equation to the Fokker—Planck equation.
The simplest way to pass from ME to FPE is by expressing the
integrand in Eq. (1) in terms of the small parameter A = x’ — x,
which is of order the mean jumping length L :

px —x',x") _p(=A,x+A)
T(x’) T t(x+A)

and expanding around x in powers of A (Kramer—Moyal ex-
pansion). However, this step is justified provided that p, 7, n,
are not strongly varying functions of x over distances of order
L . If we assume that 7 is a smooth function of x, we may con-
centrate on the other quantity: 7 = p/t. A branching into two

n(x") n(x + A) 3

cases is possible: (1) 4 is a smooth function, or (2) % is not. Al-
though, condition (2) actually contains (1) as a particular case,
it turns out convenient to consider them separately, since (1) is
easier to deal with.

Finally, we will consider also the case (3), when n itself is
not a smooth function.

Case (1): Both n and h are smooth functions. We are al-
lowed to make a Taylor expansion in powers of the function
h x n. The result, truncated to second order, yields Eq. (2) with

U:/dAp(A’x)A, D=1/dAp(A’x)A2. )
(x) 2 T(x)

Limiting the truncation to second order is ordinarily justified on
the basis of Pawula theorem [13,14].

All the information relevant to our problem is packed into U,
D. Two important cases are (A) U = (dD/dx), or (B) U = 0.
Case (A) recovers Fick’s law, while case (B) yields the solution

oqn = 8$(D(x)n(x)). (5)

Both results may be verified by direct substitution into Eq. (2).
It turns out that relation (A) arises straightforwardly from ME
(1) by postulating the symmetry

p(x'—x,x)  plx—x",x) p(A,x) p(=A,x+A)
x) ) (x)  t(x+A)

(6)
which ensures the time reversal symmetry of the microscopic
dynamics. Indeed, a first-order Taylor expansion of the second
argument around x yields, after rearranging,

Adp(_Asx)
dx

dint
=p(A,x) — p(—A,x)+ Ap(—A,x) P
(N
Using Eq. (7) into the integrals (4) yields the sought result (A)
(For a different derivation, see Prof. Feder’s lecture notes [15].)
The solution (B) has some relevance, too, since it cor-
responds to the choice of a symmetrical kernel: p(A,x) =
p(—A, x). Although apparently natural, the range of validity
of this condition is actually rather narrow, as it cannot hold un-
der smoothly varying conditions, where p(A, x) # p(—A, x);
that is, the probability for a particle of jumping rightwards or
leftwards cannot be the same. In order to better understand
this point, let us consider a system where test particles col-
lide against some scattering centres. Jumps are arcs of ballistic
motion between two collisions. If the system is not homoge-
neous the density ng of the scattering centres is not uniform.
Let us suppose, say, dns./dx < 0: a test particle at x has a
larger probability of striking a scattering centre that is on its left
(x — 8x) rather than on its right (x 4+ éx), and therefore of being
backscattered in the opposite direction. Hence, there is a larger
probability of bouncing back rightwards than the converse.
Having ruled out the case (B) for several inhomogeneous
systems, one could wonder how general is condition (A). It
turns out that (A) generically holds for a large class of 1-degree-
of-freedom Hamiltonian systems [16—18] (see also [19] for an-
other particular case). For more general systems, and especially
in systems with more degrees of freedom, the above constraints
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