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Abstract

In this Letter, we propose a fractional-order controller to stabilize the unstable fixed points of an unstable open-loop system. Also, we show that
this controller has strong ability to eliminate chaotic oscillations or reduce them to regular oscillations in the chaotic systems. This controller has
simple structure and is designed very easily. To determine the control parameters, one needs only a little knowledge about the plant and therefore,
the proposed controller is a suitable choice in the control of uncertain chaotic systems.
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1. Introduction

Chaos theory, as a new branch of physics and mathematics,
has provided us a new way of viewing the universe and is an
important tool to understand the world we live in. Chaotic be-
haviors have been observed in different areas of science and
engineering such as mechanics, electronics, physics, medicine,
ecology, biology, economy and so on. To avoid troubles aris-
ing from unusual behaviors of a chaotic system, chaos control
has gained increasing attention in recent years. An important
objective of a chaos controller is to suppress the chaotic oscilla-
tions completely or reduce them to the regular oscillations [1].
Many control techniques such as open-loop control methods,
traditional linear and nonlinear control methods, adaptive con-
trol methods, and fuzzy control methods have heretofore been
implemented in the control of chaotic systems [1,2].

Fractional calculus is a mathematical topic with more than
300 years old history but its application to physics and engi-
neering has been attracted lots of attention only in the recent
years. It has been found that in interdisciplinary fields, many
systems can be described by fractional differential equations.
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For example dielectric polarization [3], electrode—electrolyte
polarization [4], electromagnetic waves [5], visco-elastic sys-
tems [6], quantum evolution of complex systems [7], quan-
titative finance [8] and diffusion wave [9] have been known
to display fractional-order dynamics. Due to the lack of ap-
propriate mathematical methods [10], fractional-order dynamic
systems were studied only marginally in the design and prac-
tice of control systems in the last few decades. However, in
the recent years, emergence of effective methods in differen-
tiation and integration of non-integer order equations makes
fractional-order systems more and more attractive for the sys-
tems control community. The TID controller [11], the PI*DH
controller [10], the CRONE controllers [12—-14] and the frac-
tional lead-lag compensator [15,16] are some of the well-known
fractional-order controllers. In some of these papers it is ver-
ified that the fractional-order controllers can have better dis-
turbance rejection ratios and less sensitivity to plant parameter
variations compared to the traditional controllers.

In this Letter, we propose a simple fractional-order con-
troller to control unstable systems. Also, we show that the
proposed controller can reduce chaotic oscillations to the reg-
ular oscillations or eliminate them. This Letter is organized as
follows. Section 2 includes basic concepts in fractional calcu-
lus. In Section 3, a fractional-order controller is proposed to
stabilize unstable fixed points of an open-loop system. Sec-
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tion 4 discusses the chaos control issue. In this section, the
proposed fractional-order controller is employed to control
some chaotic systems. Conclusions in Section 5 close the Let-
ter.

2. Introduction to fractional calculus
2.1. Definitions

The differintegral operator, denoted by , DY, is a combined
differentiation—integration operator commonly used in frac-
tional calculus. This operator is a notation for taking both the
fractional derivative and the fractional integral in a single ex-
pression. For positive ¢ it denotes derivative and for negative g
it denotes integral actions.

The commonly used definitions for fractional derivatives
are Grunwald-Letnikov, Riemann-Liouville and Caputo defi-
nitions [17]. The Grunwald-Letnikov definition is given by:
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The Riemann-Liouville definition is the simplest and easiest
definition to use. This definition is given by:
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where n is the first integer larger than ¢, i.e.,n — 1 < g <n and
I' is the Gamma function:
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The Laplace transforms of the Riemann—Liouville fractional in-
tegral and derivative are given as follows:
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Unfortunately, the Riemann-Liouville fractional derivative ap-
pears unsuitable to be treated by the Laplace transform tech-
nique in that it requires knowledge of the non-integer order
derivatives of the function at + = 0. This trouble does not exist
in the Caputo definition of the fractional derivative. This defi-
nition of derivative, which sometimes called smooth fractional
derivative, is defined by:
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where m is the first integer larger than ¢. The Laplace transform
of the Caputo fractional derivative is:
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Contrary to the Laplace transform of the Riemann-Liouville
fractional derivative, only integer order derivatives of function
f are appeared in the Laplace transform of the Caputo frac-
tional derivative. For zero initial conditions, (7) reduces to:
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2.2. Approximations

Direct implementation of fractional-order transfer functions
is problematic. Hence, to implement these transfer functions,
integer order approximations of the fractional transfer functions
are determined. There are many different methods to find such
approximations. Charef [18,19], Oustaloup [20], Carlson [21]
and Matsuda [22] approximations are the well-known approx-
imations of the fractional-order transfer functions. From the
control theoretic point of view, the proposed methods are di-
vided into two groups. Methods that use continued fraction
expansions (CFE) and interpolation techniques such as Carlson
and Matsuda methods, and methods that use curve fitting or
identification techniques such as Oustaloup and Charef meth-
ods [23].

Since none of the existing methods transcend others regard-
ing to all desires, it is not possible to say that which one is the
best [24]. A comprehensive comparison of these approximation
methods has been given in Chapter 3 of [24]. In the numerical
simulations of the present work, the Oustaloup method is used
to find rational approximation of the fractional operators. This
simple method provides a continuous approximation of frac-
tional transfer functions using recursive allocation of zeros and
poles to achieve an admissible accuracy.

The approximated transfer function based on Oustaloup
method is determined using the following definition:
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Gain k is adjusted so that both sides of (9) have unit gain at
1 rad/s. The number of poles and zeros of the approximated
transfer function (N) and the frequency range ([w;, wy]) are
selected beforehand. w; , and w, , are calculated by the fol-
lowing equations:
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