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Abstract

A model of nonlinear resonance as a periodically perturbed pendulum is considered, and a new method of analytical estimating the width of a
chaotic layer near the separatrices of the resonance is derived for the case of slow perturbation (the case of adiabatic chaos). The method turns out
to be successful not only in the case of adiabatic chaos, but in the case of intermediate perturbation frequencies as well.
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1. Introduction

The extent of chaotic domains, and, in particular, the width
of chaotic layers, is one of the most important characteris-
tics of the chaotic motion of Hamiltonian systems. Until now,
several aspects of the problem of analytical estimation of the
width of a chaotic layer were considered in Refs. [1-7]. Po-
tentially, the ability of estimating the extent of chaos in phase
space of Hamiltonian systems has a wide field of applications
in physics and dynamical astronomy. Wisdom et al. [8] and
Wisdom [9] estimated the width of the chaotic layer near the
separatrices of spin—orbit resonances in the rotational dynam-
ics of planetary satellites and Mercury. Yamagishi [10] made
estimates of the width of the chaotic layer near the magnetic
separatrix in poloidal diverter tokamaks. In these both appli-
cations, Chirikov’s approach [2] based on the separatrix map
theory was used. Chirikov derived approximate formulas for
the width in the assumption of high-frequency perturbation of
nonlinear resonance; however, as follows from these same for-
mulas, the chaotic layer is exponentially thin with the ratio
of perturbation frequency to the frequency of small-amplitude
phase oscillations on the resonance. This means that the cases
of intermediate and low frequencies of perturbation are most
actual in applications. So, analysis of the problem of estima-
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tion of the width of a chaotic layer in these cases is definitely
necessary.

In this Letter, a method of analytical estimation of the width
of a chaotic layer, especially aimed at the case of slow, or adia-
batic, chaos, is proposed. It is based on the theory of separatrix
maps. The nonlinear resonance is modelled by the Hamiltonian
of a perturbed nonlinear pendulum. There are two fundamental
parameters: the ratio of the frequency of perturbation to the fre-
quency of small-amplitude phase oscillations on the resonance,
and the parameter characterizing strength of the perturbation.

The applicability of the theory of separatrix maps for de-
scription of the motion near the separatrices of the perturbed
nonlinear resonance in the full range of the relative frequency of
perturbation, including its low values, was discussed and shown
to be legitimate in Ref. [11].

The field of applications of the derived method is rather wide
due to generic character [2] of the perturbed pendulum model of
nonlinear resonance. The method can be used in any application
where a separatrix map is derived for description of chaotic mo-
tion. Many of such applications are described, e.g., in Ref. [12].

Analytical and numerical approaches to measuring the width
of a chaotic layer have different merits and different demerits.
The inherent shortcoming of any analytical approach consists
in that it implies an idealization of the phenomenon, and the
estimates are inherently approximate. The precision of the es-
timates is hard to evaluate, due to a number of approximations
involved. On the other hand, the numerical methods are applica-
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ble in a rather narrow range of values of parameters: they cannot
be used in the case of very low relative frequencies of perturba-
tion (due to limitations on computation time), also in the case
of high relative frequencies of perturbation (because the width
of the chaotic layer is exponentially thin with the perturbation
frequency), and in the case of very small amplitudes of pertur-
bation, due to limitations on the arithmetic precision. Therefore
only analytical methods can give the global picture. Their an-
other advantage is that the analytical estimation is easy and fast,
as soon as the theoretical model is shown to be valid. Finally,
the most important advantage, perhaps, is in the physical in-
sight that the analytical methods provide, making the role of
each parameter clearly visible.

2. The model of nonlinear resonance and the separatrix
map

Under general conditions [2,13,14], a model of nonlinear
resonance is provided by the Hamiltonian of the nonlinear pen-
dulum with periodic perturbations. A number of problems on
nonlinear resonances in mechanics and physics is described by
the Hamiltonian
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(see, e.g., Ref. [11]). The first two terms in Eq. (1) represent
the Hamiltonian Hy of the unperturbed pendulum; ¢ is the pen-
dulum angle (the resonance phase angle), p is the momentum.
The periodic perturbations are given by the last two terms; t is
the phase angle of perturbation: T = £2¢ + 10, where 2 is the
perturbation frequency, and 7y is the initial phase of the pertur-
bation. The quantities F, G, a, b, k are constants. We assume
that F > 0, G > 0, k is integer, and a = b. We use the notation
¢ =a/F = b/F for the relative amplitude of perturbation.

The so-called separatrix (or “whisker””) map
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written in the present form and explored in Refs. [1,2,13] and
first introduced in Ref. [15], describes the motion in the vicinity
of the separatrices of Hamiltonian (1). The quantity w denotes
the relative (with respect to the unperturbed separatrix value)
pendulum energy w = % — 1, and 7 retains its meaning of the
phase angle of perturbation. The constants A and W are the two
basic parameters, already mentioned in the Introduction. The
parameter A is the ratio of §2, the perturbation frequency, to
wo = (FG)'/?, the frequency of the small-amplitude pendulum
oscillations. The parameter W in the case of k =1 and a = b
has the form [16]:
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Here A>()) = 4 A 22722 G the value of the Melnikov—
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Arnold integral as defined in Ref. [2]. Formula (3) differs from
that given in Refs. [2,14] by the term A;(—A), which is small

for A > 1. However, its contribution is significant for A small
[16], i.e., in the case of adiabatic chaos. Expression (3) for the
parameter W needs to be modified at very high relative frequen-
cies of perturbation (see Refs. [5,17]). Analytical expressions
for W at different values of k are given in Refs. [2,11] and at
arbitrary a, b in Ref. [11].

The accuracy of separatrix map (2) in describing the be-
haviour of original system (1) can be estimated by the order
of magnitude as ~ ¢ (see Refs. [5,12]). Measurement of the
chaotic layer width allows one to estimate the accuracy directly,
as demonstrated below in Section 5.

Note that the expression for the increment of the phase t in
map (2) is a rough approximation. It is valid for a low strength
of perturbation, i.e., at w < 1. According to Refs. [16,18], one
can improve the accuracy of the map by means of replacing
the logarithmic approximation of the phase increment by the
original expression through the elliptic integrals. For the sake of
brevity we do not explore the advantages of this improvement
further in estimating the width. This can be straightforwardly
accomplished if one needs to improve precision of estimating
the width at increasing the magnitude of perturbation.

One iteration of map (2) corresponds to one period of the
pendulum rotation or a half-period of its libration. The motion
of system (1) is mapped by Eq. (2) asynchronously [16]: the
relative energy variable w is taken at ¢ = =, while the pertur-
bation phase 7 is taken at ¢ = 0. The desynchronization can be
removed by a special procedure [11,16]. The synchronized sep-
aratrix map gives correct representation of the sections of the
phase space of the near-separatrix motion both at high and low
perturbation frequencies; this was found in Ref. [11] by direct
comparison of phase portraits of the separatrix map to the cor-
responding sections obtained by numerical integration of the
original systems. This testifies good performance of both the
separatrix map theory and the Melnikov theory (that describes
the splitting of the separatrices).

The asymptotic expression for W that ensues from Eq. (3) at
A~ 0is W =~ 8e). A good correspondence of this expression to
the actual amplitude of the separatrix map derived numerically
by integration of the original system was found in Ref. [6].

An equivalent form of Eq. (2), used, e.g., in Refs. [16,19], is
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Note that while the second line of Egs. (4) is taken modulo 27,
the quantity ¢ given by Eq. (5) is taken modulo 27 in the fol-
lowing analytical treatment only when explicitly stated.

3. The case of the least perturbed border
We obtain the dependence of the half-width y, of the main

chaotic layer of the separatrix map in a numerical experi-
ment with Eqs. (4). The border value y;,, corresponding to
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