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Abstract

By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of
the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition
of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton
solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish
that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the
governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for

the passage from the continuous to a discrete description of the field.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A sought-after property of model field equations is that they
possess localized, permanent wave solutions that retain their
identity upon interacting with each other. Solitons, which are
solutions of fully-integrable equations, are an example of such
waves. Unfortunately, integrability is not always a property of
models that are of physical importance. Therefore, it is im-
portant to develop simple, albeit approximate, approaches to
studying the dynamics of permanent waves in non-integrable
systems, for which exact solutions are difficult to obtain.

The idea of identifying a localized solution of a nonlinear
wave equation with an elementary particle was first proposed
by Perring and Skyrme [1]. They found a solution of (what is
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known today as) the sine-Gordon equation (SGE) [2] consist-
ing of two interacting, localized waves, which is an example
of (what is nowadays called) a two-soliton solution, several
years before the notion of a soliton was introduced by Zabusky
and Kruskal [3]. Through numerical simulation, the latter au-
thors discovered that the localized traveling-wave solutions of
the Korteweg—de Vries equation retain their shapes (identi-
ties) after they pass through each other (interact). Apparently,
Zabusky and Kruskal were unaware of the work of Perring and
Skyrme [1] and arrived at the idea of identifying the nonlin-
ear waves’ dynamics with those of particles through experiment
rather than conjecture.

Since their discovery, solitons have attracted an enormous
amount of attention. Significant progress has been made in their
mathematical description, and their applications have been far-
reaching [4,5]. The so-called kink solitary waves considered by
Perring and Skyrme [1] have been shown to be indeed solitons
[5,6]. Moreover, the relationship between the particle-like dy-
namics of the coherent structures that emerge in the solutions
of nonlinear wave equations and the field theories of particle
physics are well-established in the literature [4,7-9].
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From a mathematical point of view, we can elucidate the
latter relationship by, somehow, reducing the “infinitely com-
plex” continuous description of the field to a “finitely complex”
discrete description. In this Letter, we show how this can be
achieved by studying the dynamics of quasi-particles. Our ap-
proach amounts to “degrading” the continuous description of a
wave profile to a discrete description of the centers of coherent
structures, assuming that the shapes of the coherent structures
(for an integrable system, this would simply be the solitons)
are not significantly affected by each other’s presence. To this
end, in this Letter, the term ‘quasi-particle’ refers to these per-
manent, indestructible and virtually non-deformable coherent
structures, whose centers can be treated as point particles with
mass equal to some associated measure of inertia that we call
the pseudomass. Furthermore, replacing a complicated contin-
uous profile by a superposition of localized shapes can also be
viewed as a coarse-grain description, in the sense that small de-
formations and wiggles are filtered out from the profile leaving
merely the main structure (the “grains”).

Hence, the coarse-grain description amounts to replacing the
solution of a nonlinear wave equation with a linear superposi-
tion of basis states (i.e., traveling-wave solutions in their unde-
formed, or non-interacting, state), whose centers’ trajectories,
which for a nonlinear equation do not follow the undisturbed
(linear) trajectories, are considered unknown. Restricting to the
case of just two superimposed waves, a discrete model for the
trajectories is derived and solved numerically in this Letter. This
approach gives a wave profile whose deviation from the analyti-
cal two-soliton solution (when available) is orders of magnitude
smaller than the characteristic height of the solitons. Conse-
quently, this paves the way for the construction of successive
approximations that account for the higher-order, nonlinear in-
teractions of solitons.

Here, we note that our coarse-grain description is a special
interpretation of the more general method of collective coordi-
nates/variables, which has been put on solid theoretical ground
[10] and has become part of the textbooks on solitons [5].
The latter approach made its debut in the study of resonances
and collisions of solitary waves in the so-called ¢* equation
[11,12], a close relative of the SGE, and the study of two-
soliton interactions in the SGE [13,14]. Moreover, the method
of collective variables is just one type of variational approx-
imation, which is another approach to the analytical study of
nonlinear wave equations that has recently regained popular-
ity [15—17]. Furthermore, it appears that Rice [18] was the first
to realize that the collective-coordinate variational approxima-
tion provides a way of “distilling” the particle-like dynamics of
nonlinear waves from the continuous (field) description, though
Karpman and Solov’ev [13] had the foresight to use the term
‘quasi-particle’ in their discussion.

Finally, we note that the nonlinear wave equation featured
herein—the sine-Gordon equation—continues to be of interest
as a model field equation [19]. In addition, various modifica-
tions of it have been considered in the literature. For example, in
order to establish the effects of acceleration on the shape of the
SGE’s solitons, Fogel et al. [20] introduced a driving force into
the SGE. However, this required also adding dissipation in the

field equation in order to stabilize the evolution of the solitons,
i.e., to ensure that they reach a steady terminal velocity [20,21].
Adding dissipation opens new horizons of investigation, and
different physical mechanisms can be considered as progeni-
tors of the dissipative force. It is well known that, in fluid me-
chanics, linear dissipation of either viscous or Darcy type can
balance the nonlinearity in the field equation and allow stable
localized waves to exist [22,23]. Similarly, in incompressible
shallow-water flows, a viscous dissipation can allow for the
existence of localized coherent structures with solitonic behav-
ior [24]. Nonetheless, one thing is certain: dissipation can alter
the behavior of a nonlinear field equation dramatically. There-
fore, in this Letter, we focus on the lossless SGE of Perring
and Skyrme [1] and show that the coarse-grain description of
the field leads to the physical dynamics of locally-accelerating
quasi-particles, without introducing a driving force or dissipa-
tion into the equation. In this respect, however, the SGE differs
fundamentally from the modern lossless nonlinear field theories
of continuum mechanics (see, e.g., Ref. [25] and those therein),
since the “unbalanced” nonlinearity in the former allows for
the creation of localized coherent structures and does not lead
to formation of singularities in finite time.

2. The sine-Gordon equation and its soliton solutions

For the purposes of this Letter, the SGE takes the following
dimensionless (i =c=m = 1) form:

Uy — Uxy = —Sinu, (D

where the subscripts denote partial differentiation. We have
selected the SGE as our featuring example because there are
known analytical expressions for its two-soliton solutions. This
allows us to show that the coarse-grain description is both an
effective approximation tool and a new method for nonlinear-
wave quantization.

It is easy to show that the Lagrangian and the Hamiltonian
of the SGE read
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respectively [2,5], where the “—" sign in the right-hand side

refers to L and the “+” sign to H. In addition, the wave mo-
mentum is defined [7] as
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Then, the conservation of the energy and linear momentum re-
quire that dH /dt = 0 and d P /dr = 0, respectively.
Now, if we consider the moving frame & = x — v¢, Eq. (1)
reduces to an ODE, which has the following solution:

u=¢($)=4arctan|:exp( <v<lL “)
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Notice that the latter is a one-soliton solution because
s [limy s oo u(x, 1) —limy— _so u(x, )] = 1 forall # < oo [2].
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