
Physics Letters A 367 (2007) 83–87

www.elsevier.com/locate/pla

Exact solutions of Laplace equation by homotopy-perturbation
and Adomian decomposition methods

A. Sadighi, D.D. Ganji ∗

Mazandaran University, Department of Mechanical Engineering, PO Box 484, Babol, Iran

Received 8 December 2006; received in revised form 17 February 2007; accepted 26 February 2007

Available online 1 March 2007

Communicated by A.R. Bishop

Abstract

In this work, two powerful analytical methods, called homotopy-perturbation method (HPM) and Adomian decomposition method (ADM) are
introduced to obtain the exact solutions of Laplace equation with Dirichlet and Neumann boundary conditions. The results obtained by these
methods are then compared with variational iteration method (VIM). The comparison among these methods shows that although the numerical
results of these methods are the same, HPM is much easier, more convenient and efficient than ADM and VIM.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Partial differential equations which arise in real-world phys-
ical problems are often too complicated to be solved exactly.
And even if an exact solution is obtainable, the required calcu-
lations may be too complicated to be practical, or it might be
difficult to interpret the outcome. Very recently, some promis-
ing approximate analytical solutions are proposed, such as Exp-
function method [1,2], Adomian decomposition method [3–7],
variational iteration method [8–10] and homotopy-perturbation
method [11–16]. Other methods are reviewed in Refs. [17,18].

HPM is the most effective and convenient one for both lin-
ear and nonlinear equations. This method does not depend on a
small parameter. Using homotopy technique in topology, a ho-
motopy is constructed with an embedding parameter p ∈ [0,1],
which is considered as a “small parameter”. HPM has been
shown to effectively, easily and accurately solve a large class
of linear and nonlinear problems with components converging
rapidly to accurate solutions. HPM was first proposed by He
[11] and was successfully applied to various engineering prob-
lems [19–21].
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Recently, VIM is applied for exact solutions of Laplace
equation [22]. The aim of this work is to employ HPM and
ADM to obtain the exact solutions for Laplace equations and to
compare the results with those of VIM. Different from ADM,
where specific algorithms are usually used to determine the
Adomian polynomials, HPM handles linear and nonlinear prob-
lems in a simple manner by deforming a difficult problem into
a simple one.

The Laplace equation is often encountered in heat and mass
transfer theory, fluid mechanics, elasticity, electrostatics, and
other areas of mechanics and physics. The two-dimensional
Laplace equation has the following form:

(1)
∂2u

∂x2
+ ∂2u

∂y2
= 0

or

(2)∇2u = 0,

where ∇2 is the Laplacian.
The Dirichlet boundary conditions for Laplace’s equation

consist in finding a solution of u on domain D such that on
the boundary of D is equal to some given function [23,24].
One physical interpretation of this problem which arises in heat
equations is as follows: fix the temperature on the boundary of
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the domain and wait until the temperature in the interior does
not change anymore; the temperature distribution in the interior
will then be given by the solution to the corresponding Dirichlet
problem.

The Neumann boundary conditions for Laplace’s equation
specify not the function itself on the boundary of D, but its
normal derivative [23,24]. Physically, this is similar to the con-
struction of a potential for a vector field whose effect is known
at the boundary of D alone.

In this work, four Laplace equations, two with Dirichlet
boundary conditions and two with Neumann boundary condi-
tions, are studied.

2. Fundamentals of the homotopy-perturbation method

To illustrate the basic ideas of this method, we consider the
following equation [11]:

(3)A(u) − f (r) = 0, r ∈ Ω,

with the boundary condition of

(4)B

(
u,

∂u

∂n

)
= 0, r ∈ Γ,

where A is a general differential operator, B a boundary opera-
tor, f (r) a known analytical function and Γ is the boundary of
the domain Ω .

A can be divided into two parts which are L and N , where L

is linear and N is nonlinear. Eq. (3) can therefore be rewritten
as follows:

(5)L(u) + N(u) − f (r) = 0, r ∈ Ω.

Homotopy perturbation structure is shown as follows:

(6)

H(ν,p) = (1 − p)
[
L(ν) − L(u0)

] + p
[
A(ν) − f (r)

] = 0,

where

(7)ν(r,p) :Ω × [0,1] → R.

In Eq. (6), p ∈ [0,1] is an embedding parameter and u0 is
the first approximation that satisfies the boundary condition. We
can assume that the solution of Eq. (6) can be written as a power
series in p, as following:

(8)ν = ν0 + pν1 + p2ν2 + p3ν3 + · · ·
and the best approximation for solution is

(9)u = lim
p→1

ν = ν0 + ν1 + ν2 + ν3 + · · · .

The above convergence is discussed in [11].

3. Implementation of HPM to the Laplace equation

In order to assess the advantages and accuracy of HPM, we
consider the following examples.

Example 1. Consider the two-dimensional Laplace equation

(10)uxx + uyy = 0, x > 0, y < π,

subject to the boundary conditions of

u(0, y) = 0, u(π, y) = sinhπ cosy,

(11)u(x,0) = sinhx, u(x,π) = − sinhx.

In order to solve Eq. (10), using HPM, we construct the fol-
lowing homotopy for this equations:

(12)H(ν,p) = (1 − p)νxx + p(νxx + νyy) = 0.

Substituting ν from Eq. (8) into Eq. (12) and rearranging
based on powers of p-terms, we can obtain:

(13)p0:
∂2ν0

∂x2
= 0,

(14)p1:
∂2ν1

∂x2
+ ∂2ν0

∂y2
= 0,

(15)p2:
∂2ν2

∂x2
+ ∂2ν1

∂y2
= 0,

(16)p3:
∂2ν3

∂x2
+ ∂2ν2

∂y2
= 0.

Solving Eq. (13), we obtain:

(17)ν0(x, y) = x cosy.

The zeroth approximation ν0(x, y) satisfies three boundary
conditions when considering sinhx ≈ x. Solving Eqs. (14)–
(16) we obtain:

(18)ν1(x, t) = 1

3!x
3 cosy,

(19)ν2(x, t) = 1

5!x
5 cosy,

(20)ν3(x, t) = 1

7!x
7 cosy.

The solution of Eq. (10) when p → 1 will be as follows:

(21)u(x, y) = cosy

(
x + 1

3!x
3 + 1

5!x
5 + 1

7!x
7 + · · ·

)
.

Therefore, the exact solution of u(x, y) in closed form is

(22)u(x, y) = sinhx cosy

which is the same as that obtained by VIM [22].

Example 2. Consider the two-dimensional Laplace equation

(23)uxx + uyy = 0, x > 0, y < π,

subject to the boundary conditions of

u(0, y) = siny, u(π, y) = coshπ siny,

(24)u(x,0) = 0, u(x,π) = 0.

Proceeding as before, we construct the following homotopy:

(25)H(ν,p) = (1 − p)νxx + p(νxx + νyy) = 0.
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