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Abstract

Wave scattering is considered in a medium in which many small particles are embedded. Equations for the effective field in the medium are
derived when the number of particles tends to infinity.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Assume that waves in the medium are described by the equa-
tion

(1)Lu := (
aip(x)u,p

)
i
+ k2n(x)u = 0 in R

3,

where over the repeated indices summation is understood,
u,p := ∂u

∂xp
, and the Green function, satisfying the radiation con-

dition, solves the equation:

(2)LG = −δ(x − y) in R
3.

If there are M particles Dm, placed in the medium, situated in
a bounded domain D, outside of which

(3)aip(x) = δip, n(x) = 1, x ∈ D′ := R
3 \ D,

where aip(x), n(x) are C2-smooth functions, δip is the Kro-
necker symbol, and the ellipticity condition holds:

c1

3∑
p=1

|tp|2 �
3∑

i,p=1

aiptpti � c2

3∑
p=1

|tp|2, c1 > 0,
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where t ∈ C
3 is an arbitrary vector, then the scattering problem

consists of solving the equation

(4)LU = 0 in R
3\

M⋃
m=1

Dm,

(5)U |S = 0 on Sm, 1 � m � M,

(6)U = U0 +
M∑

m=1

∫
Sm

G(x, s)σm(s) ds.

Here LU0 = 0, u0 is the scattering solution in the absence of
particles, i.e., if M = 0.

By Ramm’s lemma [3, p. 257], one can define the scattering
solution U0 in the absence of small particles by the relation:

G(x,y) = g(y)U0(x,β)
[
1 + o(1)

]
,

(7)|y| → ∞,
y

|y| = −β,

where g(y) := eik|y|
4π |y| . We assume that ka � 1, where a =

1
2 max1�m�M diamDm.

The aim of this Letter is to develop a general approach to
wave scattering in a medium in which many small particles are
embedded. Smallness of the particles is understood in the sense
ka � 1. The functions n(x) and aip(x) are assumed practically
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constant on the scale of the wavelength

k
(|∇n| + |∇aip|) � 1.

We generalize the approach developed in [4–7]. Earlier works
are [1,10,11], to mention a few. Let us briefly discuss the dif-
ference between our work and the well-known work [1]. In
[1] the scatterers are assumed to be points, the “scattering co-
efficients” (i.e., the scattering amplitudes, corresponding to a
single scatterer) are assumed known, while in our work analyt-
ical formulas for these “coefficients” are derived, so that these
“coefficients” are known and depend on the shapes of the par-
ticles; the boundary conditions on the surfaces of the particles
are taken into account in our theory, but do not appear in [1]
because there is no boundary of a point scatterer. The small
particles in our theory are not necessarily randomly distributed.
They, for example, can be oriented similarly. On the other hand,
our theory is applicable to the case when the particles are ran-
domly distributed.

Our basic result is a formula for the wave field in the
medium in which small particles are embedded. This field
solves Eq. (4)–(6) and satisfies the radiation condition at in-
finity:

(8)
∂(U − U0)

∂r
− ik(U − U0) = o

(
1

r

)
, r := |x| → ∞.

We assume that

(9)d � a, ka � 1,

where d = minm 	=j dist(Dm,Dj ), and the dist denotes the dis-
tance between two sets. Near any point x ∈ D, such that
min1�m�M dist(x,Dm) � a, one calculates the wavefield U by
the formula

U(x) = U0(x) +
M∑

m=1

G(x,xm)

(10)×
∫
Sm

[
1 + ikν · (s − xm)

]
σm(s) ds,

where ν
|ν| ≈ x−xm|x−xm| , and ν depends on xm,x, and on the func-

tions n(x), aip(x). The term ikν · (s − xm) comes from the
formulas∫
Sm

G(x, s)σm(s) ds

= G(x,xm)

{∫
Sm

σm(s) ds

+
∫
Sm

[G(x, s) − G(x,xm)]
G(x,xm)

σm(s) ds

}
,

G(x, s) − G(x,xm)

G(x, xm)

=
∫ 1

0 ∇yG(x, xm + τ(s − xm)) · (s − xm)dτ

G(x, xm)

:= ikν · (s − xm),

where ν = ν(x, xm), ν
|ν| = xm−x

|xm−x| . One may consider ν as a
known vector because G(x,y) is known.

In a generic case, when Qm := ∫
Sm

σm(s) ds 	= 0, the as-
sumption ka � 1 allows one to neglect the term ikν ·(s−xm) =
O(ka) in (10) and to write (10) as

(11)U(x) = U0(x) +
M∑

m=1

G(x,xm)Qm, Qm =
∫
Sm

σm ds.

If Qm = 0, then the term ikν ·s cannot be neglected. We discuss
this case in Section 3. A physical example of such a case is
the scattering by acoustically hard particles when the boundary
condition is the Neumann one: ∂U

∂N
|Sm = 0, 1 � m � M .

2. General methodology

Let us first assume that (11) is applicable and calculate Qm.
In a neighborhood of Sj one has the exact boundary condition
(5), which can be written as:∫
Sj

G(s, t)σj (t) dt

= −
(
U0(s) +

∑
m 	=j

G(s, xm)Qm

)
(12):= ue(s),

where s ∈ Sj and ue is the effective field acting on Dj . The
error one makes using Eq. (12) is of the order O(ka + a

d
), so

in the limit ka → 0 and a
d

→ 0 Eq. (23) becomes exact. The
derivation of Eq. (23) is based on Eqs. (12), (16)–(18), and (22).

Our basic assumption, related to assumptions (9), is:
We assume that ue(s) is practically constant on the distances

of order a.
As |s − t | → 0, one has

(13)G(s, t) = 1

4π |s − t |
[
1 + O(ka)

]
, |s − t | → 0,

where s, t ∈ Sj and we have assumed for simplicity that aij =
δij . In the general case one replaces the function g0(s, t) :=

1
4π |s−t | on the surface Sj by the fundamental solution of the

operator
∑3

i,p=1 aip(xj )
∂2

∂xi∂xp
, which can be written explicitly

and analytically:

G(x,y) = 1

4π
√

det(aip)

1

[a(−1)
ip (xi − yi)(xp − yp)]1/2

,

where the matrix a
(−1)
ip is inverse of the matrix aip(x), xi is the

ith Cartesian component of the vector x (not to be confused
with the vector xj = x).

If aip = δip , then G solves the equation

G(x,y) = g0(x, y) + k2
∫
D

g(x, t)n(t)G(t, y) dt,

(14)g0(x, y) = 1

4π |x − y| .
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