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General N -box problem
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Abstract

The paradoxical properties of the N -box problem (N � 3) are dispelled by the straightforward exercise of constructing, for an arbitrary
pre-selected state with N nonzero orthogonal components, the corresponding (unique) post-selected state such that this pair leads to the same
properties. A new and interesting N -box problem is presented.
Crown Copyright © 2006 Published by Elsevier B.V. All rights reserved.

PACS: 03.65.Bz

1. Introduction

Fifteen years ago Aharonov and Vaidman [1] analyzed “a curious situation in which one particle can be found with certainty in
N − 1 (!) separate boxes”.1 They considered a quantum particle prepared at t = tin in the initial single-particle state

(1)|Ψin〉 = N−1/2[|1〉 + · · · + |N − 1〉 + |N〉]
and successfully post-selected at time t = tf in the final state

(2)|Ψf〉 = (
N2 − 3N + 3

)−1/2[|1〉 + · · · + |N − 1〉 − (N − 2)|N〉],
where {|i〉 ≡ |ψi〉 | i = 1,2, . . . ,N} with N � 3 is an orthonormal basis set. When the spatial supports of the wave functions
{ψi(x) ≡ 〈x|ψi〉} are mutually disjoint then finding the particle in the state |j〉 is identified with finding it somewhere in the j th box
defined by the spatial support of ψj(x). Aharonov and Vaidman used the Aharonov–Bergman–Lebowitz (ABL) rule [2] to calculate
the probability of finding the particle in the j th box at an intermediate time t = T between tin and tf when only the j th box was
probed for the presence of the particle by a strong measurement of the observable associated with the projector P̂j ≡ |j〉〈j | having
eigenvalues Pj = 0 (particle not found) and 1 (particle found). Assuming that the time evolution was negligible for [tin, T − 0+]
and [T + 0+, tf], they showed that whenever the postselection was successful the particle had been found in the j th box with
certainty for any value of j except j = N . Hence, according to Aharonov and Vaidman [3], “This single particle is, in some sense,
simultaneously in N − 1 boxes”.

This “curious situation” has generated such interest and controversy that the simplest case (N = 3) is frequently referred to as
“the 3-box paradox”. In this case

(3)|Ψin〉 = 3−1/2(|1〉 + |2〉 + |3〉), |Ψf〉 = 3−1/2(|1〉 + |2〉 − |3〉).
* Corresponding author.

E-mail addresses: rick.leavens@nrc.ca, crl@cm8.phy.nrc.ca (C.R. Leavens).
1 In order to maintain a consistent notation throughout, N has been changed here to N − 1.

0375-9601/$ – see front matter Crown Copyright © 2006 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2006.06.089

http://www.elsevier.com/locate/pla
mailto:rick.leavens@nrc.ca
mailto:crl@cm8.phy.nrc.ca
http://dx.doi.org/10.1016/j.physleta.2006.06.089


C.R. Leavens et al. / Physics Letters A 359 (2006) 416–423 417

According to the ABL rule, for the successfully postselected subensemble the probability that the particle was found in box 1 at
time t = T when only that box was “opened” in a strong “position” measurement is given by [3]

Prob(P1 = 1|Ψin,Ψf; P̂1) = |〈Ψf|P̂1|Ψin〉|2
|〈Ψf|P̂1|Ψin〉|2 + |〈Ψf|[1̂ − P̂1]|Ψin〉|2

= |〈Ψf|1〉〈1|Ψin〉|2
|〈Ψf|1〉〈1|Ψin〉|2 + |〈Ψf|2〉〈2|Ψin〉 + 〈Ψf|3〉〈3|Ψin〉|2

(4)= |1/3|2
|1/3|2 + |1/3 − 1/3|2 = 1.

Similarly, Prob(P2 = 1|Ψin,Ψf; P̂2) = 1. Aharonov and Vaidman [3] regarded this as having one particle in two places simul-
taneously “even in a stronger sense than it is in a double slit experiment”.2 They also emphasized the contextuality evident
in the fact that the corresponding probability that the particle was found in boxes 1 and 2 probed as a unit is less than 1, i.e.
Prob(P1∪2 = 1|Ψin,Ψf; P̂1∪2) < 1 with P̂1∪2 ≡ |1〉〈1| + |2〉〈2|.

In an attempt to better understand the “sense” in which one particle can be in several disjoint spatial regions simultaneously,
we considered the N -box problem for an arbitrary initial state |Ψin〉. Section 2.1 presents the analysis for the case of a strong
intermediate measurement. Sections 2.2 and 2.3 consider the case of a weak intermediate measurement. In Section 3, results for
both strong and weak intermediate measurements are presented for another interesting N -box problem. Brief concluding remarks
are made in Section 4.

In [3], Aharonov and Vaidman stressed the fact that, for a situation in which both a preselection was made at tin and a postselec-
tion was made at tf, the present moment of time, tnow, must be greater than tf, i.e. tin < T < tf < tnow. This means that it is important
to use the correct tense in discussing the N -box problem. In particular, using the present tense for the intermediate measurement
can be misleading.

2. The N -box problem

In this section, starting with any normalized initial state with N � 3 nonzero orthogonal components, we construct the cor-
responding post-selected state such that the main predicted statistical results for each of the intermediate strong measurements
considered in the N -box problem are exactly the same, for successful postselection, as those obtained by Aharonov and Vaidman
for the pair of states (1) and (2). For completeness, the case of weak intermediate measurements is also considered.

2.1. Strong measurement case

Consider the normalized initial single-particle state

(5)|Ψin〉 ≡ ∣∣Ψ (t = tin)
〉 = d−1

in

N∑
i=1

ci |i〉 (N � 3); din ≡
[

N∑
i=1

|ci |2
]1/2

.

It is assumed without loss of generality that |ci | �= 0 or �= ∞ (i = 1,2, . . . ,N ) but is otherwise arbitrary. To emphasize the fact
that N different experimental arrangements are involved, we consider N ensembles—one ensemble for each of the N different
experiments contemplated—with each member of each ensemble prepared in the same state |Ψin〉 at the initial time t = tin. Suppose
that for the j th ensemble a strong measurement was made at an intermediate time t = T of the observable associated with the
projection operator P̂j ≡ |j〉〈j |. There are, of course, two possible results: eigenvalue Pj = 1 was obtained with probability

(6)Prob(Pj = 1|Ψin; P̂j ) = ∣∣〈j |Ψin〉
∣∣2 = d−2

in |cj |2
and the state collapsed to

(7)|Ψj 〉 ≡ |j〉;
eigenvalue Pj = 0 was obtained with probability

(8)Prob(Pj = 0|Ψin; P̂j ) = d−2
in d2

not j ; dnot j ≡
[

N∑
i=1;i �=j

|ci |2
]1/2

and the state instead collapsed to

(9)|Ψnot j 〉 ≡ d−1
not j

N∑
i=1;i �=j

ci |i〉.

2 Kirkpatrick presented a three slit implementation of the 3-box system in [4] and concluded that ‘its paradoxical behavior is as ordinary (to the extent that any
atomic Young system may be considered “ordinary”!) as a double-slit interference apparatus’.
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