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Singularity analysis of fourth-order Møller–Plesset perturbation theory
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Abstract

The usefulness of Møller–Plesset perturbation theory, a standard technique of quantum chemistry, is determined by singularities in the corre-
sponding energy function in the complex plane of the perturbation parameter. A method is developed that locates singularities from fourth-order
perturbation series, using quadratic approximants with bilinear conformal mappings.
© 2006 Elsevier B.V. All rights reserved.
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Many-body perturbation theory is one of the earliest tech-
niques for solving the Schrödinger equation. In the version
developed by Møller and Plesset [1] the Hartree–Fock approxi-
mation is used for the zeroth-order wavefunction and Rayleigh–
Schrödinger perturbation theory is used to determine higher-
order corrections. The fourth-order theory (MP4) was formerly
considered a method of choice for high-accuracy ab initio quan-
tum chemistry on account of an apparently favorable balance of
accuracy and computational cost. However, concerns have been
raised concerning the perturbation series convergence [2–8]. As
a result, this method has largely been replaced in practice by the
CCSD(T) coupled cluster theory [9].

The underlying causes of poor convergence have recently
been elucidated in terms of the singularity structure of the en-
ergy function [10–15], and a summation method for MP4 has
been proposed that improves the summation accuracy by mod-
eling the singularity structure [16,17]. The success of the sum-
mation can depend on having advance knowledge of singularity
locations. However, the singularity analyses were carried out
using full configuration-interaction (FCI) calculations and per-
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turbation series of very high order, which have a much higher
computational cost than MP4. The problem we address here
is how to characterize the singularity structure given only the
fourth-order asymptotic series.

The perturbation theory can be formulated from a partition-
ing of the Hamiltonian [18],

(1)H(z) = H0 + z(Hphys − H0),

in terms of a perturbation parameter z. Hphys is the true
Schrödinger Hamiltonian while H0 is the sum of one-particle
Fock operators. The ground-state energy eigenvalue is obtained
as a power series in z with the physical solution correspond-
ing to z = 1. This power series is the asymptotic series of
a function E(z), and the accuracy with which the series can
be summed depends on the locations of singular points in the
complex z plane. Functional analysis predicts there will be
two classes of singularities [11,13,14,19,20]. Class α singulari-
ties are complex-conjugate pairs of isolated square-root branch
points [19]. They represent avoided crossings of the ground-
state energy and the energy of the first excited state of the same
symmetry for a path along the real z axis. Class β singularities
are critical points that lie on the real axis [11,14,20].

The critical points, in principle, are branch points with a
complicated functional form [20,21]. This would be true, at
least, if the exact Hartree–Fock wavefunction were used as
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the zeroth-order solution. In practice, an approximation to the
Hartree–Fock solution is used, with the wavefunction as a lin-
ear combination in a finite-dimension basis set. In that case,
the function E(z) is approximated as an eigenvalue of a finite
real matrix. This is the full configuration-interaction energy,
EFCI(z), which can only have square-root branch points, in
complex-conjugate pairs [19,21]. Thus, the class α singulari-
ties are accurately modeled but the class β singularities are not.
In practice, EFCI(z) models a class β critical point of E(z) with
a cluster of square-root branch point pairs with small imaginary
parts [14].

In previous work we studied singularities of EFCI(z) using
two approaches. First, we computed the FCI energy spectrum at
many different values of real z and determined the branch point
locations from analysis of avoided crossings with the ground
state [14]. Because each FCI computation is very costly, this
strategy is inefficient, and the analysis was carried out for only a
few systems. Subsequently, we determined singularity structure
for a larger set of systems by analyzing the high-order behav-
ior of the asymptotic series [15]. The series coefficients can be
determined to high order with high precision using intermedi-
ate quantities obtained in the course of an FCI computation [4,
8,22–25]. Thus, a single FCI computation is sufficient to deter-
mine the locations of the several branch points closest to the
origin in the z plane.

Because of the high computational cost, any method requir-
ing an FCI computation is practical at present only for systems
with no more than approximately 10 correlated electrons. For
routine applications one is limited to MP4, which can be effi-
ciently computed from explicit formulas [18]. Fourth order is
too low for standard methods of singularity analysis to be of
much use. Asymptotic methods such as the D’Alembert ratio
test and its more sophisticated variants [26–28] have rigorous
convergence theorems, but for low-order MP series nonsingu-
lar contributions are so large that the theorems are irrelevant.
Furthermore, because these methods have as their foundation
Darboux’s theorem concerning the infinite-order limit of the
series coefficients as determined by the dominant singularity
[26,29], they are poorly suited to studying nondominant singu-
larities. The typical singularity structure of EFCI(z) is to have
singularities in both the negative and positive half planes ap-
proximately equidistant from the origin, and, as a result, the
convergence of the series at fourth order often cannot be ac-
counted for by just the dominant singularity structure [15].

A more promising strategy is to use an approximant, an
arbitrary function containing parameters that are fit to the as-
ymptotic series of the true function. The advantage is that if
the functional form of the approximant is a good match for that
of the true function, an accurate model can be obtained with
very few parameters. We know that the singularities of EFCI(z)

are square-root branch points and we can design the approx-
imant accordingly. A straightforward approach for modeling
square-root branch points is a quadratic approximant [30,31].
However, for MP4 with complex-conjugate branch-point pairs
in both half planes at approximately the same distance from the
origin, these approximants attempt to simultaneously model all
the singularities with one or two branch points approximately

midway between the true ones [10], which is a very poor model
of the true functional form. We demonstrate here a method that
combines a quadratic approximant with a conformal mapping.
The mapping forces the approximant to focus only on the sin-
gularity structure in one half plane at a time.

A quadratic summation approximant is a function

(2)S[L/M,N ](z) = 1

2QM

(
PL ±

√
P 2

L − 4QMRN

)
,

where PL, QM , and RN are polynomials of degrees L, M ,
and N , respectively, with the coefficients of the polynomials
determined from

(3)QMε2 − PLε + RN ∼O
(
zL+M+N+2),

where ε represents an asymptotic power series for the energy.
Eq. (3) leaves one coefficient undetermined. Therefore, we add
an additional condition Q(0) = 1. To the extent that the approx-
imant models the true functional form of the energy, roots of the
discriminant polynomial,

(4)D[L/M,N ] = P 2
L − 4QMRN,

correspond to locations of branch points of EFCI(z).
Let the asymptotic series of the FCI energy be

(5)EFCI(z) ∼
n∑

i=0

Eiz
i,

with MP4 given by n = 4. E0 is the sum of Hartree–Fock orbital
energies. It is convenient to introduce

(6)ε(z) = E0 + [
EFCI(z) − E0

]
/z,

with asymptotic series

(7)ε(z) ∼
n−1∑

i

εiz
i , ε0 = E0 + E1, εi>0 = Ei+1.

The zeroth-order coefficient, ε0, is the Hartree–Fock approxi-
mation for the total energy. ε(z) has the same singularity struc-
ture as EFCI. We have found no advantage to analyzing the
original series, Eq. (5). This is presumably because E0 and E1
are determined primarily by nonsingular contributions, with no
useful information about the singularity structure.

Because Eq. (7) is a series of order n − 1, the polynomial
indices for MP4 must satisfy the condition L + M + N = 2.
Otherwise the particular index choice seems to have no signif-
icant effect on the accuracy. We will use the index [1/0,1] in
the present analysis, which gives branch points

(8)z1 =
(

β

α
+ 2γ

)−1

, z2 =
(

β

α
− 2γ

)−1

,

(9)α = ε2/ε1, β = ε3/ε1, γ = (
β − α2)1/2

.

For MP series it is usually the case that β > α2, implying that
zp and zn are pure real. One can expect that the approximant
should be unable to fit both the real and imaginary parts of
two branch-point pairs, as that would involve determining four
numbers using only the three series coefficients, ε1, ε2, and ε3
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