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New hyperbolic schemes for reliable treatment of Boussinesq equation
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Abstract

In this work, the nonlinear Boussinesq equation is investigated. New schemes that employ hyperbolic functions are introduced to carry out this
work. New solitary wave solutions and plane periodic solutions are established.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear phenomena appear in a wide variety of scientific
applications such as plasma physics, solid state physics, fluid
dynamics and chemical kinetics [1–8]. Because of the increased
interest in the theory of solitary waves, a broad range of analyt-
ical and numerical methods were used in the analysis of these
scientific models.

The fourth-order nonlinear Boussinesq equation reads

(1)utt − uxx − 3
(
u2)

xx
− uxxxx = 0.

Eq. (1) was introduced by Boussinesq to describe the propaga-
tion of long waves in shallow water. It also arises in other phys-
ical applications such as nonlinear lattice waves, iron sound
waves in a plasma, and in vibrations in a nonlinear string. More-
over, it was applied to problems in the percolation of water in
porous subsurface strata.

Travelling wave solutions appear in many forms. Solitons,
which form the main type of travelling wave solutions, are lo-
calized travelling waves with infinite support asymptotically
zero at large distances. Solitons appear in other forms such as
kink waves, peakons, cuspons, and compactons. The latter are
solitons with compact support where each compacton is a soli-
ton confined to a finite core without exponential wings. Most
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recently, Rosenau and Pikovsky [6] introduced a new type of
travelling wave, termed kovaton, which is a robust compacton
with a flat top made of two compact kinks glued together. The
discrete kovatons are hat-shaped, and kovatons collide elasti-
cally as compactons.

The appearance of these solitary wave solutions has in-
creased the menagerie of solutions appearing in model equa-
tions, both integrable and nonintegrable [5,6]. All nonlinear
equations that give rise to nonanalytic solutions have nonlin-
ear dispersion as a distinguished feature.

It is the objective of this work to further complement previ-
ous studies to make a further progress in this field. We aim in
this work to formally derive new sets of travelling wave solu-
tions. Many strategies will be pursued to achieve our goal. The
work rests mainly on new ansätze that use one hyperbolic func-
tion or combine two hyperbolic functions. The tanh method [7,
8] and the sine–cosine method [9–14] will be used as well.

In what follows, we highlight the main features of the pro-
posed methods. The power of the methods, that will be used, is
its ease of use to determine shock or solitary type of solutions.

2. The methods

In this section we present three ansätze, the cosh or sinh an-
sätze I and II, the sinh–cosh ansatz III, the tanh method and
the sine–cosine method to handle the Boussinesq equation (1).
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The proposed ansätze I, II and III can be used directly in a
straightforward manner to determine the unknown parameters
involved in each ansatz.

2.1. A cosh or sinh ansatz I

In this case we introduce a cosh or a sinh ansatz I of the form

(2)u(x, t) = λ

1 + α cosh[μ(x − ct)] ,
or

(3)u(x, t) = λ

1 + α sinh[μ(x − ct)] ,
where λ, μ, and α are parameters that will be determined. This
ansatz can be applied directly to the given equation to determine
the parameters.

2.2. A cosh or sinh ansatz II

In this case we introduce a cosh or a sinh ansatz I of the form

(4)u(x, t) = λ + β cosh[μ(x − ct)]
1 + α cosh[μ(x − ct)] ,

or

(5)u(x, t) = λ + β sinh[μ(x − ct)]
1 + α sinh[μ(x − ct)] ,

where λ, μ, α and β are parameters that will be determined.
This ansatz can also be applied directly to the given equation to
determine the parameters.

2.3. A sinh–cosh ansatz III

In this case we introduce a sinh–cosh ansatz III of the form

(6)u(x, t) = λ + α cosh[μ(x − ct)]
sinh2[μ(x − ct)] ,

or

(7)u(x, t) = λ + α sinh[μ(x − ct)]
cosh2[μ(x − ct)] ,

where λ, μ, α and β are parameters.

2.4. The tanh method

The tanh method is a powerful solution method for the com-
putation of exact travelling wave solutions. A power series in
tanh was used to obtain analytical solutions of travelling wave
type of certain nonlinear evolution equations.

The PDE in two independent variables

(8)P(u,ut , ux, uxx, uxxx, . . .) = 0,

can be transformed to a nonlinear ODE

(9)Q(u,u′, u′′, u′′′, . . .) = 0,

upon using a wave variable ξ = x − ct . Eq. (9) is then inte-
grated as long as all terms contain derivatives where integration
constants are considered zeros.

To avoid complexity, Malfliet and Hereman [7,8] had cus-
tomized the tanh technique by introducing tanh as a new vari-
able, since all derivatives of a tanh are represented by a tanh
itself. Introducing a new independent variable

(10)Y = tanh(μξ),

leads to the change of derivatives:

d

dξ
= μ

(
1 − Y 2) d

dY
,

(11)
d2

dξ2
= μ2(1 − Y 2)(−2Y

d

dY
+ (

1 − Y 2) d2

dY 2

)
,

where other derivatives can be derived in a similar manner. The
following series expansion

(12)u(μξ) = S(Y ) =
M∑

k=0

akY
k,

is proposed, where M is a positive integer, in most cases, that
will be determined. Substituting (11) and (12) into the simpli-
fied ODE yields an equation in powers of Y . The parameter M

is usually obtained by balancing the linear terms of highest or-
der in the resulting equation with the highest-order nonlinear
terms. With M determined, we collect all coefficients of pow-
ers of Y in the resulting equation where these coefficients have
to vanish. This will give a system of algebraic equations in-
volving the parameters ak , (k = 0, . . . ,M), μ, and c. Having
determined these parameters, and using (12) we obtain an ana-
lytic solution u(x, t) in a closed form.

2.5. The sine–cosine method

The solutions of many nonlinear equations can be expressed
in the form

(13)u(x, t) =
{ {λ cosβ(μξ)}, |ξ | � π

2μ
,

0 otherwise,

or in the form

(14)u(x, t) =
{ {λ sinβ(μξ)}, |ξ | � π

μ
,

0 otherwise,

where λ, μ, and β are parameters that will be determined, μ

and c are the wave number and the wave speed, respectively.
We then use

u(ξ) = λ cosβ(μξ),

(15)

(
un

)′′ = −n2μ2β2λn cosnβ(μξ)

+ nμ2λnβ(nβ − 1) cosnβ−2(μξ),

and for (14) we use

u(ξ) = λ sinβ(μξ),

(16)

(
un

)′′ = −n2μ2β2λn sinnβ(μξ)

+ nμ2λnβ(nβ − 1) sinnβ−2(μξ).

Substituting (15) or (16) into the reduced ODE gives a trigono-
metric equation of cosR(μξ) or sinR(μξ) terms. The parame-
ters are then determined by first balancing the exponents of each
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