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Transient growth for streak-streamwise vortex interactions
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Abstract

We analyze transient growth due to the linear interaction between streaks and streamwise vortices. We obtain initial perturbations which give
optimal initial and total energy growth, characterize the dependence of the dynamics on the initial distribution of perturbation energy, and compare
with results from pseudospectra analysis.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Shear flows are fluid flows which are non-homogeneous with
a mean shear. Turbulent shear flows are of great fundamental
physical and mathematical interest because [3]: (i) Turbulence
is found both experimentally and in numerical simulations for
values of the Reynolds number well below the value at which
the laminar state loses stability [1], and (ii) the governing partial
differential equations possess numerous branches of (unstable)
steady or traveling states consisting of wavy streamwise vor-
tices and streaks that arise in saddle-node bifurcations [4–7].
Such solutions have recently been detected experimentally [3,
8], but their relevance to turbulence remains unclear.

It has been suggested that transient energy growth provides
a good basis for understanding property (i) (e.g. [2,23]). Such
transient growth can significantly amplify small perturbations
to the laminar state which can trigger non-linear effects that
lead to sustained turbulence via the self-sustaining process
identified in [12,13]. In this Letter, we analyze transient growth
due to the linear interaction of the streak and streamwise vortex
modes from the nine-mode model from [10,14]. This is a model
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for sinusoidal shear flow, which obeys the non-dimensional
equations

∂u
∂t

= −(u · ∇)u − ∇p + 1

Re
∇2u + F(y),

(1)∇ · u = 0,

where the Reynolds number and body force are defined as

(2)Re = U0d

2ν
, F(y) =

√
2π2

4Re
sin(πy/2)êx,

U0 is the characteristic velocity and ν is the kinematic viscosity.
The free-slip boundary conditions

(3)uy = 0,
∂ux

∂y
= ∂uz

∂y
= 0

are imposed at y = ±1, and the flow is assumed periodic in the
streamwise (x) and spanwise (z) directions, with lengths Lx and
Lz, respectively. The laminar profile for sinusoidal shear flow,

(4)U(y) = √
2 sin(πy/2)êx

is linearly stable for all Re [1]. In the following, we let α =
2π/Lx , β = π/2, and γ = 2π/Lz. Although difficult to obtain
experimentally, sinusoidal shear flow represents a non-trivial
shear flow which is amenable to analytical treatment; it is hoped
that the knowledge gained from the present analysis will be
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helpful for characterizing other shear flows such as plane Cou-
ette flow, boundary layer flow, Poiseuille flow, and pipe flow.

In Section 2, a geometric interpretation of transient growth
due to the interaction between streaks and streamwise vortices
is given. Then, the details of how such transient growth depends
on initial conditions, Re, and aspect ratio are derived. Further-
more, the neutral transient growth curve, below which no initial
condition gives transient energy growth, is found and discussed.
In Section 3, the transient energy growth is interpreted using
pseudospectra analysis, where a lower bound for the maximum
attainable energy is obtained using Kreiss’ theorem. We will see
that the analysis in Section 2 gives a sharper characterization of
the transient growth than that in Section 3. Our conclusions are
given in Section 4.

2. Transient growth for the streak-streamwise vortex
interaction

The matrix M arising from the linearization of the nine-
mode model from [10] about the laminar state is non-normal,
i.e., MMT �= MT M . This suggests that even though its eigen-
values are all strictly negative for all Re, corresponding to linear
stability of the laminar state, it might be possible to have tran-
sient growth of energy which could trigger non-linear effects
that sustain turbulence [2,25]. In this section, a detailed analy-
sis is conducted for the transient growth which occurs for the
2 × 2 block of M that corresponds to the linear evolution of the
amplitudes a2 and a3, which give the amplitudes of the stream-
wise invariant streak and streamwise vortex modes

u2 =
⎛
⎝ 4√

3
cos2(πy/2) cos(γ z)

0
0

⎞
⎠ ,

(5)u3 = 2√
4γ 2 + π2

( 0
2γ cos(πy/2) cos(γ z)

π sin(πy/2) sin(γ z)

)
,

respectively. We focus on this interaction because it gives the
strongest transient energy growth compared to the other inter-
actions of the linearized nine-dimensional model. Furthermore,
streaks and streamwise vortices are dominant structures in nu-
merical simulations and are related to unstable steady solutions
of the Navier–Stokes equations [4–6,9]. Finally, they are related
to optimal perturbations [17] and are the most energetically ex-
cited structures of the linearized Navier–Stokes equations with
forced input and can be explained as input–output resonances
of frequency responses [19].

A Galerkin projection onto these modes gives the linear sys-
tem

(6)

(
ȧ2
ȧ3

)
=

(
b c

0 d

)
︸ ︷︷ ︸

M23

(
a2
a3

)
,

b = −
4β2

3 + γ 2

Re
=O

(
Re−1), c = −

√
3/2βγ√
β2 + γ 2

=O
(
Re0),

(7)d = −β2 + γ 2

Re
=O

(
Re−1).

Here and elsewhere we give the scaling behavior for large Re.
The laminar state corresponds to a2 = a3 = 0; the stability of
the laminar state with respect to streak and streamwise vortex
perturbations follows from the fact that the eigenvalues b and d

of M23 are negative. The exact solution to (6) is readily shown
to be

(8)a2(t) = a20e
bt + c

d − b
a30

(
edt − ebt

)
, a3(t) = a30e

dt .

For this system, the energy is defined to be E(t) = (a2(t))
2 +

(a3(t))
2. We note that (6) also arises in the linearization of the

eight-mode model from [13] and the uncoupled-mode model
from [15] about the laminar state, with the same Re dependence
of b, c, d but with different values.

2.1. Geometric interpretation of transient energy growth

The solution (8) can be rewritten in a form which allows an
instructive geometric interpretation of transient energy growth,
namely

(9)a(t) = (
a2(t), a3(t)

) = v1b10e
bt︸ ︷︷ ︸

s1(t)

+v2b20e
dt︸ ︷︷ ︸

s2(t)

,

where formulas for b10 and b20 in terms of a20 and a30 are read-
ily obtained, and v1 and v2 are the normalized eigenvectors for
M23. Since M23 is non-normal, v1 and v2 are non-orthogonal;
for example, for the values Lz = 1.2π and Re = 400 studied
below, they are almost anti-parallel. For the related system of
plane Couette flow, these parameters correspond to the mini-
mal flow unit, the smallest domain which is found numerically
to sustain turbulence [16]. A small-amplitude initial condition
is thus the superposition of two very large-amplitude compo-
nents; i.e., |s1(0)| and |s2(0)| are large, as sketched in the left
panels of Fig. 1. For the linear system, b < d < 0, so the length
of s1(t) decays more quickly than the length of s2(t). This
leads to an a(t) with larger length (and hence larger energy)
than a(0), as sketched in the right panel of Fig. 1(a); thus, tran-
sient growth has occurred. For longer times, the length of s2(t)

also decreases substantially, and the system asymptotically ap-
proaches the laminar state with a2 = a3 = 0.

For other initial conditions, transient energy growth might
not occur: see Fig. 1(b). Clearly, the energy initially decreases
with time. Depending on the rate of decay of the length of s2(t),
the energy might always remain below its initial value, or might
eventually grow above its initial value. Such considerations mo-
tivate the following exploration of how transient energy growth
depends on initial conditions.

2.2. Application to the streak-streamwise vortex interaction

A general linear equation ȧ = Aa has the exact solution
a(t) = etAa0, where a0 = a(0). The energy of a solution is
defined as E(t) = |a(t)|2 = ∑

a2
i , where the sum is over the

components of a. It is found that E′(0) = 2a0 · Aa0 ≡ f (a0).
To find the (normalized) initial condition which gives the max-
imum initial energy growth, f (a0) is maximized subject to the
constraint g(a0) ≡ |a0|2 = 1. Using a Lagrange multiplier λ to
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