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Abstract

Weisskopf–Wigner theory applied to the macroscopically quantized field shows that the spontaneous emission rate of an excited atom is unaf-
fected by a dielectric, rather than enhanced by a factor of the refractive index, as local-field effects are eliminated in the continuum approximation.
Dielectric effects on an atom must be calculated microscopically.
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Macroscopic quantization of the field in a linear dielectric
[1–6], introduced by Ginzburg in 1940 [1], reduces the com-
plexity of the microscopic quantum electrodynamic theory by
combining the matter degrees of freedom with the field. The
macroscopic treatment of the spontaneous emission rate of an
embedded atom consists of applying the usual quantum electro-
dynamic methods with the quantized macroscopic fields. Based
on Fermi’s golden rule, the effect of a continuous dielectric en-
vironment on an excited atom is to enhance the spontaneous
emission rate by a factor of the refractive index n compared
to the vacuum environment [4–8]. Denoting the spontaneous
emission rate in the vacuum as Γv , we write this ‘index effect’
[9] as

(1)Γ = nΓv.

However, Fermi’s golden rule has no provision for the dif-
ferences between field-mode operators and Ginzburg polariton
operators. Here, we show by Weisskopf–Wigner theory that the
macroscopic result for the rate of radiative decay, and sponta-
neous emission, of an impurity atom in a dielectric is

(2)Γ = Γv
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because the interaction that is responsible for the modification
of the spontaneous emission rate is not present in the macro-
scopic theory. The spontaneous emission rate of an embedded
atom is, in fact, affected by the dielectric and we conclude that
a proper description of spontaneous emission in a dielectric re-
quires the full microscopic theory [9,10]. The ‘index effect’ is
not physical and does not validate or constrain the results of
a more fundamental microscopic [9,10] theory of spontaneous
emission in a dielectric.

The model system of a two-level atom in a linear dielectric is
treated microscopically as enumerated localized oscillators and
a localized atom interacting with the quantized vacuum field.
The Hamiltonian

H =
∑
lλ

h̄ωla
†
l al +

∑
n

h̄ωbb
†
nbn

− ih̄
∑
nlλ

(
hlalb

†
ne

ikl ·rn − h∗
l a

†
l bne

−ikl ·rn
)

(3)+ h̄ωa

2
σ3 − ih̄

∑
lλ

(
glalσ+ − g∗

l a
†
l σ−

)

consists of, in order, the free-field Hamiltonian Hfld, the free-
oscillator Hamiltonian Hosc, the oscillator–field interaction
Hamiltonian Hofi, the free-atom Hamiltonian Hatom, and the
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atom–field interaction Hamiltonian Hint. Here, a†
l and al are the

creation and destruction operators for field modes, ωl is the fre-
quency of the field in the mode l, b

†
n and bn are the creation and

destruction operators for the oscillator at the fixed position rn,
ωb is the resonance frequency associated with the oscillators,
hl = (2πωl/h̄V )1/2μ̂b · êklλ is the electric dipole interaction
in terms of the electric dipole moment μb , σ3 is the inversion
operator, σ± are the raising and lowering operators, ωa is the
resonance frequency of the atom, gl = (2πωl/h̄V )1/2μa · êklλ

is the coupling between the field and the atom at r = 0, and μa

is the dipole moment for the atom. In order to condense the no-
tation, the operator subscript λ for sums over the polarizations
is combined with the mode index l and zero-point energies have
been suppressed. The usual dipole and rotating-wave approxi-
mations have been employed. The rotating-wave approximation
has a reasonable region of validity [11] for dielectrics and has
been invoked [11], albeit implicitly, in quantum electrodynamic
treatments of dielectrics by Hopfield [12] and by Knoester and
Mukamel [8], among others.

The microscopic [9,10] quantum electrodynamic treatment
of spontaneous emission in a dielectric using the Hamiltonian
(3) is complex. Because the dielectric responds linearly to
the field, considerable simplification is attained in a macro-
scopic treatment that combines the material response with the
field. This can be accomplished either [11] by Ginzburg’s [1]
macroscopic analog of the Dirac quantization of the field in
the vacuum or by a Fano–Hopfield [12,13] diagonalization of
the Hamiltonian. One obtains the effective macroscopic Hamil-
tonian

(4)H =
∑
lλ

h̄ωl ξ̄
†
l ξ̄l

in terms of macroscopic matter–field polariton operators, ξ̄
†
l

and ξ̄l with the overbar denoting spatially averaged operators.
The effective macroscopic electric field operator is

(5)Ē = i

n

∑
lλ

√
2πh̄ωl

V

(
ξ̄le

ik·r − H.c.
)
êklλ.

The spontaneous emission rate of an impurity atom in a di-
electric can then be obtained from the macroscopic analog of
quantum electrodynamics by applying Fermi’s golden rule

(6)Γ = 2π

h̄

∣∣〈f |Hint|i
〉∣∣2

D

to the effective interaction Hamiltonian Hint = −μa · Ē, where
i labels the initial state and f denotes all available final states.
As it is typically calculated, the dielectric renormalization of
the vacuum spontaneous emission rate of an atom is found to
be n [4–8] due to the dielectric renormalization of the electric
field operator (5) by n−1, which is squared, and the D = n3

density-of-states factor.
Comparison of the effective Hamiltonian (4) and the field +

dielectric part of the microscopic Hamiltonian (3) shows that
the Ginzburg polariton operators ξ̄l are not necessarily equiv-
alent to the field-mode operators al . Then properties of these
operators must be established as it is not apparent that the

macroscopic Ginzburg polariton operators can be treated like
the microscopic field-mode operators. Hopfield [12] formally
diagonalized the Hamiltonian of a microscopic model of a di-
electric, deriving the effective Hamiltonian

(7)H =
∑
lλ

h̄Eνlᾱ
†
l ᾱl

in terms of the eigenvalues Eνl and polariton operators ᾱl

and ᾱ
†
l . In typical usage [8,12], the Hopfield polariton oper-

ators are used as field-mode operators by fixing two of the
eigenvalues as a consequence of substituting photon energies
h̄ω for a pair of polariton eigenenergies in the polariton dis-
persion relation, thereby reducing the rank of the eigenvalue
equation and adiabatically eliminating the oscillator equations
of motion [11]. This interpretation is enforced by the non-zero
commutation relation

(8)
[
ᾱl , ᾱ

†
l′
] = δll′δλλ′ .

The transformation between operators, ξ̄l = √
Eνlᾱl , is ob-

tained by comparison of Eqs. (7) and (4). Then the effective
Hamiltonian

(9)H =
∑
lλ

h̄ωl ξ̄
†
l ξ̄l + h̄ωa

2
σ3 − i

n
h̄

∑
lλ

(
gl ξ̄lσ+ − g∗

l ξ̄
†
l σ−

)

becomes

(10)

H =
∑
lλ

h̄nωlᾱ
†
l ᾱl + h̄ωa

2
σ3 − i√

n
h̄

∑
lλ

(
glᾱlσ+ − g∗

l ᾱ
†
l σ−

)

as Eνl → nωl in the limit of small δn = n − 1.
Fermi’s golden rule is a prescription for applying Weisskopf–

Wigner theory to the spontaneous emission of an atom. Taking
a more rigorous route, we calculate the radiative decay rate of
an atom by applying Weisskopf–Wigner theory to the effective
Hamiltonian. Writing the Heisenberg equations of motion that
correspond to the Hamiltonian (10) and formally eliminating
the Hopfield polariton operators, one obtains

dσ3

dt
= −2

∑
lλ

gl

n
σ̃+

t∫
−∞

dt ′ e−i(nωl−ωa)(t−t ′)g∗
l σ̃−(t ′)

(11)+ H.c.,

where σ̃± = σ±e∓iωat . Evaluating the preceding equation in
the Markov approximation and mode-continuum limit [14,15],
we find that the decay rate of the impurity atom is suppressed
by a factor of n due to the presence of the dielectric as the
well-known n3 factor for the enhanced density-of-states in a
dielectric medium is offset by the well-known renormalization
of the mode frequencies. The same result is obtained from the
Ginzburg effective Hamiltonian (9) using the commutation re-
lation for Ginzburg polaritons

(12)
[
ξ̄l , ξ̄

†
l′
] = nδll′δλλ′

derived from (8). The suppression of the spontaneous emission
rate by n,

(13)Γ = 1

n
Γv = 4ω3

aμ
2
a

3nh̄c3
,
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