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Abstract

‘We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two
famous examples: the Quantum Prisoners’ Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations

in the applied laser fields is also provided.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last decade the steadily-growing interest in the the-
ory of Quantum Computation and Quantum Information [1]
has lead to the development of a number of related topics,
one of which is the quantum analogue of Game Theory. Quan-
tum Games (QGs) were introduced in 1999 in the two seminal
works of Meyer [2] and Eisert et al. [3] and soon afterwards,
quite a number of papers approached the subject ([4-8], sur-
veys are provided in [9] and [10]). The reason why QGs have
become so popular is due to their relation with quantum algo-
rithms, especially the oracle-type ones and also with quantum
communication and cryptography. Moreover, they provide the
opportunity of advancing some fascinating speculations [3,11].

Since QGs are in fact small quantum algorithms, finding effi-
cient ways of implementing them in different physical systems
is important for the development of improved quantum com-
putation schemes. Up to the moment, a NMR implementation
of the Quantum Prisoners’ Dilemma [3] has been experimen-
tally realized [12]. Moreover, a linear optics implementation
proposal has been made in [13,14], while recently, a combi-
nation of quantum circuit and cluster state model has been
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suggested [15]. One of the most promising environments for re-
alizing quantum computation is believed to be the ion trap, and
therefore, by proposing an ion trap implementation scheme for
QGs we fill an important gap in the list of possible physical re-
alizations of QGs. Furthermore, we suggest that the analysis of
an ion-trap-specific type of decoherence as a physical process is
a very good way of confirming the theoretical results concern-
ing decoherence in QGs and better understanding the physical
phenomenon.

This Letter is structured as following: after reviewing the
basics of QGs, we introduce a general framework for realizing
QGs in the ion trap. We also analyze the effects of a partic-
ular type of decoherence that is significant to the proposed
scheme and compare the results with those derived by previ-
ous researchers on a purely theoretical basis.

2. Quantum Games

The quantization of classical games does not only mean re-
placing the players’ choices with qubits and using unitary trans-
formations on single qubits, but also exploiting entanglement.
These lead to new equilibria and increased payoffs for partic-
ular quantum strategies. Let us consider the general setup of
two-choices-multiplayer games (2 x N). Each player is given a
qubit (basis states |g) encoding, for example, the choice of co-
operation and |e), say defection). The players’ qubits are first
entangled (entanglement operator Jx) and then the players can
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make their choices, that is, apply on their qubits unitary trans-

formations of the following form:
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For example, the choice of cooperation might be represented
by C = U (0, 0) while the unitary transformation D = U (i, 0)
might stand for defection. More generally, the set of strate-
gies can be parametrized by three parameters instead of two,
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the final measurement, a disentanglement operator J ;,) is ap-
plied. This sequence of operations can be written as a quantum
circuit (Fig. 1) in which Uy, ..., Uy arethe players’ moves and
Jy is the entanglement operator of N qubits. The measured
ideal final state is
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Finally, we need a payoff function associated to all possible
measurement results. We have now defined all the necessary
components 2 x N QGs require.

For a more intuitive understanding, let us discuss two fa-
mous examples, the Quantum Prisoners’ Dilemma (QPD) and
Quantum Minority Game, whose classical counterparts have
numerous applications in economics, social sciences, biology
and so on. The QPD is a non-zero sum game in which the Nash
equilibrium does not lead to Paretto optimality, meaning that
the rational choice of strategies does not provide optimal pay-
off. Two players (prisoners) must choose between cooperation
and defection. Logical reasoning leads both players to defec-
tion, which, unfortunately for them, is less efficient than mutual
cooperation. The quantized version for two players was first in-
troduced in [3]. Here we consider the entanglement operator J
of the same form as in [12]:
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where y € [0, /2] is the entanglement strength. In order to
have the classical Prisoners’ Dilemma included in its quantum
version it is necessary that the entanglement operator com-
mutes with any direct product of “classical” strategies C and
D defined as before. The payoff function for the first player is
$1 =7Pyg + pPec + t Pog + 5Py, where Pij, i, j € {e, g} are
the probabilities of measuring the respective |ij), i, j € {e, g}
states and r = 3, reward, p = 1, punishment, t = 5, temptation
and s = 0, sucker’s payoff, are the values in the payoff matrix
of the classical dilemma.
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Fig. 1. The quantum circuit for 2 x N QGs.

The quantization of the Prisoners’ Dilemma brings a whole
new set of solutions depending on the degree of entangle-
ment y. New strategies and new equilibria occur and the clas-
sical dilemma is removed in the case of maximal entanglement
by using the pure quantum strategy Q =U (0, /2) for which
we obtain both Nash equilibrium and Paretto optimality. These
properties have been extensively discussed elsewhere ([3,4,12])
so we will not insist on this aspect.

An example of multiplayer QG is the Quantum Minority
Game (QMGQG) [7,16]. N players select one of the two available
choices (A = V(0,0,0) and B = V(x,0,0)) and the minority
is rewarded. If there is no minority, then nobody is rewarded.
Classically, the equilibrium is trivial in the sense that there is no
better strategy than making a random choice. Quantumly, for N
odd, the quantization brings nothing new but in the case of N
even, new Nash equilibria appear and the players’ payoffs are
increased. For example, for N = 4, the classical expected pay-
off is %, while in the quantum version the expected payoff is i
and the Nash equilibrium strategy is in this case V (3>~ 16> 1g)-
Moreover, in the QMG it is not necessary to apply the disentan-
glement operator J T before measurement.

3. Implementation scheme

The ion trap has been extensively studied as a candidate
system for realizing an efficient quantum information proces-
sor. In this work we will refer to the computation schemes in
[17,18]. The usual representation of qubits in the ion trap uses
the ground (|g)) and excited (|e)) internal energy states of each
ion. Unitary transformations of the form U (0, @) are realized
straightforward by using pulses or combinations of laser pulses
exciting the carrier transition that couples only the internal
states leaving the vibrational mode unchanged. For example,
a very simple game like the PQ-coin flip in [2] where two play-
ers take turns in flipping a quantum coin (i.e. qubit) would be
realized by a sequence of six carrier pulses. The Hamiltonian
describing the carrier transition is:

Hearrier = 122 (1 — n*a’a)[oe'® +h.c], 4)

where £2 is the Rabi frequency of the transition between the
internal states, o and o_ are the two-level atom transition op-
erators, 1 is the Lamb-Dicke parameter, ¢ is the laser phase
and a' and a are the creation and annihilation operators of the
vibrational states. It follows that a kmr carrier pulse (f =k /§2)
realizes one-qubit rotations of the following form:
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However, in general, QGs require entanglement and in some
cases, like the QPD, not any entanglement operator can be uti-
lized as it must commute with any direct product of “classical”
strategies. In fact, we would rather like to have an entangle-
ment operator of the form f|gg) = cos(%)|gg) +i sin(%)|ee),
with y € [0, 7 /2]. Furthermore, we need a general operator that
can produce multi-particle entanglement in the same way it pro-
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