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Discrete soliton collisions in a waveguide array with saturable nonlinearity
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Abstract

We study the symmetric collisions of two mobile breathers/solitons in a model for coupled wave guides with a saturable nonlinearity. The
saturability allows the existence of mobile breathers with high power. Three main regimes are observed: breather fusion, breather reflection and
breather creation. The last regime seems to be exclusive of systems with a saturable nonlinearity, and has been previously observed in continuous
models. In some cases a “symmetry breaking” can be observed, which we show to be an numerical artifact.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since the 1960s, a great number of papers have consid-
ered the properties of solitons in nonlinear optic media with a
Kerr-type (cubic) nonlinearity. This media can be modelled by
the cubic nonlinear Schrödinger (NLS) equation. As it is well
known, the NLS equation is integrable and, in consequence,
solitons interact elastically [1].

More recently, several authors have studied the properties of
solitons in photo-refractive media [2]. In this case, the equation
describing these media is a modification of the original NLS,
which consists in substituting the Kerr nonlinearity term by an-
other one of saturable type. This saturable (SNLS) equation
is nonintegrable and the soliton collision processes are inelas-
tic, leading to annihilation, fusion or creation of solitons [3].
This last phenomena consists of the appearance of three soli-
tons after the collision of only two of them. Another important
feature of the SNLS is that the behaviour of the solutions is
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quite generic, being independent of the details of the mathe-
matical model.

The discrete version of the NLS equation can be used to
describe nonlinear waveguide arrays within the tight binding
approximation [4]. The existence and properties of mobile dis-
crete breathers/solitons in DNLS lattices has been considered
in a number of studies. (We use the terms breathers and solitons
interchangeably in this context, also intrinsic localized modes.)
An early brief study [5] showed that breathers could propagate
along the lattice with a small loss of energy, and could become
trapped by inhomogeneities in the lattice. Later, a more detailed
study [6] suggested that “exact” travelling breathers might ex-
ist, at least for some parameter ranges. The reviews [7,8] refer to
many other papers in this area. More recently, work has concen-
trated on breathers with infinite oscillating tails [9], although
the question of the existence of exact breather solutions which
tend to zero as n → ±∞ has not yet been resolved. Given the
long history of mobile breather solutions of this equation, it is
rather surprising that a systematic study of the collision of two
breathers in the DNLS model has only recently been carried
out [10]. (We mention also that collisions have been studied in
generalised nearly integrable DNLS model in [11,12].)

Recently, some studies have considered the existence of
mobile breathers in waveguide arrays in photo-refractive crys-
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tal, described by a DNLS equation with saturable nonlinearity
[13,14]. In particular, these papers considered a discrete version
of the Vinetskii–Kukhtarev model [2,15]. This model system,
which we consider in this Letter, is governed by the following
equation of motion

(1)iu̇n − β
un

1 + |un|2 + (un+1 − 2un + un−1) = 0.

The key difference between the cubic DNLS equation and
the saturable DNLS equation is that in the later, the Peierls–
Nabarro barrier (the energy difference between a bond-centred
and a site-centred breather with the same power) is bounded
and, in most cases, smaller than in the former [16]. It allows the
existence of mobile breathers of high power.

It is worth noting that there is another saturable DNLS equa-
tion in the literature, namely

(2)iψ̇n + ν|ψn|2
1 + μ|ψn|2 ψn + (ψn+1 − 2ψn + ψn−1) = 0.

For example, Khare et al. [17] have recently published an exact
stationary breather solution for (2), although in fact the station-
ary solution of this equation is just the solution to an integrable
map first published by McMillan in 1971 [18]. Maluckov et al.
[19] have also recently studied stationary solutions of (2). How-
ever, the two models are not independent, solutions of (2) can
be mapped into solutions of (1) by the (invertible) transforma-
tion

ψn(t) = 1√
μ

exp

{
iνt

μ

}
un(t), β = ν

μ
.

The aim of the present Letter is to study breather–breather
collisions in the saturable DNLS equation (1) and to compare
the results with those obtained in the continuous SNLS and the
discrete cubic equation.

2. Numerical results

This model (1) has two conserved quantities: the Hamil-
tonian H = ∑

n[β log(1+|un|2)+|un−1 −un|2] and the power
(or norm) P = ∑

n |un|2.
In order to reduce the dimension of the large parameter space

to be considered, we have fixed β to β = 2. Higher values of β

lead to solutions that only can be moved for a restricted set of
power values [13]. Note that the localized stationary breather
solution of [17] only exists for β > 2, and hence are not rele-
vant to our discussions which focus on the β = 2 case. It would
be interesting to extend the calculations in this Letter to other
values of β to see if the presence of these stationary solutions
affected the results given here.

A moving breather vn(t) is obtained by adding a thrust q to
a stationary breather un, so that:

(3)vn(0) = un exp(iqn).

Notice that this procedure of obtaining moving breathers is sim-
ilar to the marginal mode method introduced in [20,21] for
Klein–Gordon lattices.

(a)

(b)

(c)

Fig. 1. Typical power density plots for (a) bound state formation (P = 10,
q = 0.1), (b) reflection (P = 10, q = 0.2), and (c) breather creation (P = 70,
q = 0.5). In all cases, OS collisions are considered, although these pictures do
not vary considerably for IS collisions.

In the following, we consider the collision of two identical
breathers moving in opposite directions with the same thrust q .
Analogously to Ref. [10], we consider both inter-site (IS) and
on-site (OS) collisions.

The collision scenario we observe for small P is quite sim-
ple: there exists a critical value qc below which breathers form
a bound state, and above which, breathers are reflected (see
Fig. 1(a), (b) for examples, of these two cases). It can be ob-
served that the bound state “oscillates” after the collision. The
amplitude of these oscillations decreases when approaching to
the critical point, whereas their “period” increases. (Note that
the “reflection” case could equally be regarded as a transmis-
sion case as the two breathers are indistinguishable. In the case
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