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Electromagnetic light rays in local dielectrics
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Abstract

An approach to deal with the limit of geometrical optics of electromagnetic waves which propagate in moving nonlinear local dielectric media
in the context of Maxwellian electrodynamics is here developed in order to apply to quite general material media. Fresnel equations for the
light rays are generically found, and its solutions are intrinsically obtained. The multi-refringence problem is addressed, and no more than four
monochromatic polarization modes are found to propagate there.
© 2006 Elsevier B.V. All rights reserved.

PACS: 42.15.-i; 42.25.Dd; 42.25.Lc

1. Introduction

Maxwell theory naturally yields electromagnetic wave prop-
agation phenomena. This problem is fully solved in vacuum,
since those equations become linear. Inside material media,
however, polarization and magnetization fields may lead to non-
linear differential equations which are more difficult to deal
with. Light propagation is also studied in the context of non-
linear Lagrangians for electrodynamics [1,2], the vacuum prop-
erties of which being similar to those of material media consid-
ered here. Some time ago, electrodynamics in material media
has been considered as a possible scenario to investigate ana-
logue models for gravitational phenomena (see Ref. [3] and
references therein). This work intends to obtain and discuss
the general Fresnel equations which completely describe the
propagation of light rays in a nonhomogeneous nonisotropic
nonlinear moving local dielectric medium.

In order to gain generality, equations are written in a co-
variant form which accounts for electrodynamics under the
influence of the gravitational field gμν in an arbitrary causal ori-
entable 4-dimensional Lorentzian manifold (i.e., a causal space-
time). We adopt the metric with signature (+,−,−,−). Al-
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though this approach makes Maxwell equations rather involved,
it is shown here that the propagation of the field discontinuities
looks just the same as if working in the flat gμν = ημν case (for
which we have the Levi-Civita tensor also given in Cartesian
coordinates with η0123 = +1). Partial derivatives with respect
to the spacetime coordinates are denoted by a comma, and the
corresponding covariant derivatives with respect to gμν are de-
noted by a semi-colon. Square brackets enclosing any number
of tensorial indices mean a complete anti-symmetrization in
these indices, as in X[αβ]γ .= Xαβγ − Xβαγ . We also adopt1

the standard decomposition for the covariant gradient of the ob-
server’s normalized velocity vector congruence V μ as

(1)V μ;ν = 1

3
θhμ

ν + σμ
ν + ωμ

ν + aμVν,

with all aμ, h
μ
ν , σμν = σνμ (traceless), and ωμν = −ωμν be-

ing spacelike tensors. Physically, θ is the expansion factor,
σμ

ν is the shear tensor, ωμ
ν is the vorticity tensor, and aμ

is the acceleration vector of the congruence V μ, while the
tensor h

μ
ν

.= δ
μ
ν − V μVν projects onto the spatial sections of

1 The congruence V μ was explicitly introduced in order to have a simpler
description of the motion vμ of the material media in Section 2: the medium
may have a simple motion despite being described by possibly nonsimply mov-
ing observers. This feature is impossible to achieve if the relative velocity is the
only one being considered.
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this observer. We write the electromagnetic tensors [4] of field
strength Fμν = V [μEν] − ημν

αβV αBβ and field excitation
P μν = V [μDν] − ημν

αβV αHβ . We also make use of the elec-
tromagnetic current source vector Jμ expressed in geometrical
nonrationalized Heavyside units such that the velocity of light
in vacuum is c = 1. Only monochromatic waves are considered
here, avoiding then subtleties concerning the meaning of their
velocity.

Maxwell equations for the electromagnetic fields are set in
Section 2 for a generically moving dielectric medium. Section 3
presents the propagation of light rays inside smooth media as
wave discontinuities in the realm of this theory, generally yield-
ing Fresnel equations. Section 4 deals with Fresnel equation
in its full generality, while in Section 5 light propagation over
discontinuous media is worked out. Section 6 summarizes our
results.

2. Moving media

All the electromagnetic properties of many dielectric mate-
rials at rest are encoded in the phenomenological constitutive
relations which give P μν as a function of Fαβ in the 3+1 form
Dα = εα

βEβ and Hα = μα
βBβ , where μα

β is the inverse of
the permeability of the medium. (The whole argument which
follows this point can easily be broadened to encompass the
general local constitutive relations Dα = εα

βEβ + ε̃α
βBβ and

Hα = μα
βBβ + μ̃α

βEβ with some modifications in Eqs. (2),
(3), and no formal changes at all thereafter.) When electrody-
namics is to deal with moving media with velocity vμ, however,
the constitutive equations above require some generalization.
We adopt the local expressions [5,6]

(2a)Dα − ηαβμνVβvμHν = εα
β

(
Eβ − ηβλμνVλvμBν

)
,

(2b)Hα + ηαβμνVβvμDν = μα
β

(
Bβ + ηβλμνVλvμEν

)
,

where the coefficients εα
β and μα

β may be dependent of po-
sition as well as of the field strengths. One notes that the pro-
jection of the velocity vμ of the medium onto the observer’s
spatial section vμ → h

μ
ν vν clearly leave Eq. (2) unchanged;

thus vμ can be taken, and it will henceforth be considered, as
this last spacelike vector, with v2 .= −hμνv

μvν . Let us intro-
duce the kinematic susceptibilities

(3a)ε(1)
α

β
.= hα

γ + vαvγ

1 − v2

(
εγ

β − h
[γ
β μν

ρvν]vρ

)
,

(3b)ε(2)
α

β
.= hα

γ + vαvγ

1 − v2

(
ηγλμνμνβ + ηβ

λμνεγ
ν

)
Vλvμ,

(3c)μ(1)
α

β
.= hα

γ + vαvγ

1 − v2

(
μγ

β − h
[γ
β εν

ρvν]vρ

)
,

(3d)μ(2)
α

β
.= hα

γ + vαvγ

v2 − 1

(
ηγλμνενβ + ηβ

λμνμγ
ν

)
Vλvμ,

which encompass both the electromagnetic behavior of the
medium as well as its kinematics, as seen from the observer V μ.
All the four kinematic susceptibilities above may depend on all
quantities Eμ, Bμ, vμ, and xμ. Simple algebra then yields the

constitutive Eqs. (2) in the form

(4a)Dα = ε(1)
α

βEβ + ε(2)
α

βBβ,

(4b)Hα = μ(1)
α

βBβ + μ(2)
α

βEβ.

Eqs. (4) encode all the electromagnetically relevant properties
of local dielectric media. Let us now define the following aux-
iliary 3-dimensional matrices:

(5a)d(1)
α

β
.= ε(1)

α
β + ∂ε(1)

α
τ

∂Eβ
Eτ + ∂ε(2)

α
τ

∂Eβ
Bτ ,

(5b)d(2)
α

β
.= ε(2)

α
β + ∂ε(1)

α
τ

∂Bβ
Eτ + ∂ε(2)

α
τ

∂Bβ
Bτ ,

(5c)h(1)
α

β
.= μ(1)

α
β + ∂μ(1)

α
τ

∂Bβ
Bτ + ∂μ(2)

α
τ

∂Bβ
Eτ ,

(5d)h(2)
α

β
.= μ(2)

α
β + ∂μ(1)

α
τ

∂Eβ
Bτ + ∂μ(2)

α
τ

∂Eβ
Eτ .

Maxwell equations can be written either in compact form as
P μν ;ν = 4πJμ and ημνλρFμν;λ = 0, or explicitly in terms of
the 3 + 1 electromagnetic field strengths Eμ and Bμ with the
aid of Eqs. (5) as

(6a)Bα;α + aαBα − ηαβμνVβωμνEα = 0,

hμ
αBα;βV β − ημαβλVαEβ;λ

(6b)+
(

2θ

3
hμ

α − σμ
α − ωμ

α

)
Bα = 0,(

ε(1)
ν
β;νEβ + ε(2)

ν
β;νBβ

)
+

(
∂ε(1)

α
β

∂vμ
Eβ + ∂ε(2)

α
β

∂vμ
Bβ

)
vμ;α

+ d(1)
ν
βEβ ;ν + d(2)

ν
βBβ ;ν + (

ε(1)
α

βEβ + ε(2)
α

βBβ
)
aα

(6c)+ ηλ
ναβVνωαβ

(
μ(1)

λ
βBβ + μ(2)

λ
βEβ

) = 4πJ νVν,

hμ
α

[(
ε(1)

α
β;νEβ + ε(2)

α
β;νBβ

)
+

(
∂ε(1)

α
β

∂vλ
Eβ + ∂ε(2)

α
β

∂vλ
Bβ

)
vλ;ν

+ d(1)
α

βEβ ;ν + d(2)
α

βBβ ;ν
]
V ν

+ ημνγ
αVγ

[(
μ(1)

α
β;νBβ + μ(2)

α
β;νEβ

)
+

(
∂μ(1)

α
β

∂vλ
Bβ + ∂μ(2)

α
β

∂vλ
Eβ

)
vλ;ν

+ h(1)
α

βBβ ;ν + h(2)
α

βEβ ;ν
]

+
(

2θ

3
hμ

α − σμ
α − ωμ

α

)(
ε(1)

α
βEβ + ε(2)

α
βBβ

)
(6d)= −4πJ νhμ

ν .

In Eqs. (6) it was already taken into account explicitly the even-
tual dependence there may be between the variables the kine-
matic susceptibilities depend upon. Thus, the covariant deriv-
ative ε(1)

α
β;ν is meant to be taken with constant Eμ, Bμ, and

vμ; and similarly for the others. Eqs. (6) are then expected to
completely describe electromagnetic phenomena inside general
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