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Abstract

The one-dimensional Dirac equation with position-dependent mass is approximately solved for the generalized Hulthén potential in the case of
the smooth step mass distribution. The relativistic energy spectrum and two-component spinor wavefunctions are obtained by the function analysis
method. Some interesting results including the standard one-dimensional Hulthén and Woods—Saxon potentials are also discussed.
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1. Introduction

Searching for the exactly solvable solutions of the Schrodin-
ger equation and relativistic wave equation for the real physical
potentials have attracted much attention in quantum mechanics.
Recently, Egrifes et al. [1,2] investigated the bound states of the
Klein—Gordon and Dirac equations for the generalized Hulthén
potential [3] by using the Nikiforov—Uvarov method [4] within
the framework of PT-symmetric quantum mechanics [5]. In re-
cent years, there has been a growing interest in non-Hermitian
Hamiltonian systems with a real energy spectrum [6—11]. The
generalized Hulthén potential includes the standard Hulthén po-
tential [12] and Woods—Saxon potential [13] as special cases.

Systems with position-dependent mass have been found to
be very useful in studying the physical properties of vari-
ous microstructures, such as quantum dots [14], semiconduc-
tor heterostructure [15], quantum liquids [16], etc. In the last
few years, there has been considerable work on searching for
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analytic solutions of the Schrodinger equation with position-
dependent mass [17-28]. In Ref. [23], Alhaidari obtained the
exact solution of the Dirac equation for a charged particle with
position-dependent mass in the Coulomb field. Considering that
there are few work on searching for analytic solutions of the
relativistic wave equation with position-dependent mass, thus,
searching further for analytic solutions of the relativistic wave
equation with position-dependent mass is considerable interest.

In this Letter, we consider the generalized Hulthén poten-
tial and the smooth step mass distribution to solve the Dirac
equation with position-dependent mass. The relativistic energy
spectrum formula and corresponding spinor wavefunction ex-
pression for the generalized Hulthén potential have been ob-
tained analytically.

2. Bound states of the Dirac equation with
position-dependent mass

Choosing the atomic units i = ¢ = 1, the one-dimensional
time-independent Dirac equation with any given interaction po-
tential V (x) in the vector coupling scheme is given by [29,30]
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where E denotes the energy and M denotes the mass. The
spinor wavefunction ¥ (x) has two components. We denote the
upper and lower components by ¢ (x) and 6(x), respectively.
Eq. (1) can be decomposed into the following two coupled dif-
ferential equations:
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Eliminating the lower spinor component form Eqs. (2) and
(3), we obtain a second order differential equation, which con-
tains first order derivatives,
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We consider the smooth step mass
M (x) = Mo(1 + ntanh, ax), (®)]

where 7 is a very small non-negative parameter, and g is a
constant, g # 0. Here, we have applied deformed hyperbolic
functions, which are defined as [31],
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Recently, de Souza Dutra [32] found that the deformed hy-
perbolic functions can be reduced to the non-deformed ordi-
nary hyperbolic functions potentials by using the coordinate
translation transformation. When g = 1, the mass increases
from the value M = My(1 — n) for x = —oo to the value
M = My(1 + n) for x = +o0o. The significant variations are
occurring in the range of —é <x < é, ie., M(—1/a) =
My(1 —0.762n), M(1/a) = My(1 4+ 0.762n). The smooth step
mass with ¢ = 1 has been studied by Dekar et al. [17] for a
smooth potential within the framework of the one-dimensional
Schrodinger equation with position-dependent mass. The ratio
of the derivative of the mass to the mass is given by
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In the case of n — 0, we may ignore the terms that contain
the derivative of the mass in Eq. (4). This approximation can
lead us to reduce the Dirac equation (4) to the Klein—Gordon
form
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We consider the one-dimensional generalized Hulthén potential
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After making the parameter replacements of « — «/2, g —
—q and Vy — —Vj, the generalized Hulthén potential (9) be-
comes the form given by Egrifes et al. in Eq. (11) of Ref. [2].
When ¢ = —1 and g = 1, this generalized Hulthén potential (9)
can be reduced to the standard one-dimensional Hulthén poten-
tial [12] and Woods—Saxon potential [13], respectively. Substi-
tuting Egs. (5) and (9) into Eq. (8), we can obtain a Schrodinger-
like equation for the upper spinor component ¢ (x),
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where the parameters Vi, V; and E are defined as the combina-
tions of some parameters,
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We let z = m and write the upper spinor component

wavefunction as ¢ (x) =z~ P (1 — z) "V F(z), then Eq. (10) can
be reduced to the following form
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If and only if the following two equations exist:
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Eq. (12) can be reduced to a Gauss hypergeometric equation.
A solution of Eq. (12) can be written in Gauss hypergeometric
form as
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