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Abstract

The one-dimensional Dirac equation with position-dependent mass is approximately solved for the generalized Hulthén potential in the case of
the smooth step mass distribution. The relativistic energy spectrum and two-component spinor wavefunctions are obtained by the function analysis
method. Some interesting results including the standard one-dimensional Hulthén and Woods–Saxon potentials are also discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Searching for the exactly solvable solutions of the Schrödin-
ger equation and relativistic wave equation for the real physical
potentials have attracted much attention in quantum mechanics.
Recently, Egrifes et al. [1,2] investigated the bound states of the
Klein–Gordon and Dirac equations for the generalized Hulthén
potential [3] by using the Nikiforov–Uvarov method [4] within
the framework of PT-symmetric quantum mechanics [5]. In re-
cent years, there has been a growing interest in non-Hermitian
Hamiltonian systems with a real energy spectrum [6–11]. The
generalized Hulthén potential includes the standard Hulthén po-
tential [12] and Woods–Saxon potential [13] as special cases.

Systems with position-dependent mass have been found to
be very useful in studying the physical properties of vari-
ous microstructures, such as quantum dots [14], semiconduc-
tor heterostructure [15], quantum liquids [16], etc. In the last
few years, there has been considerable work on searching for
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analytic solutions of the Schrödinger equation with position-
dependent mass [17–28]. In Ref. [23], Alhaidari obtained the
exact solution of the Dirac equation for a charged particle with
position-dependent mass in the Coulomb field. Considering that
there are few work on searching for analytic solutions of the
relativistic wave equation with position-dependent mass, thus,
searching further for analytic solutions of the relativistic wave
equation with position-dependent mass is considerable interest.

In this Letter, we consider the generalized Hulthén poten-
tial and the smooth step mass distribution to solve the Dirac
equation with position-dependent mass. The relativistic energy
spectrum formula and corresponding spinor wavefunction ex-
pression for the generalized Hulthén potential have been ob-
tained analytically.

2. Bound states of the Dirac equation with
position-dependent mass

Choosing the atomic units h̄ = c = 1, the one-dimensional
time-independent Dirac equation with any given interaction po-
tential V (x) in the vector coupling scheme is given by [29,30][
i

d

dx

(
0 −1
1 0

)
+ (

E − V (x)
)(

0 1
1 0

)
− M

(
1 0
0 1

)]
Ψ (x)

(1)= 0,
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where E denotes the energy and M denotes the mass. The
spinor wavefunction Ψ (x) has two components. We denote the
upper and lower components by φ(x) and θ(x), respectively.
Eq. (1) can be decomposed into the following two coupled dif-
ferential equations:

(2)−i
dθ

dx
+ [

E − V (x)
]
θ − M(x)φ = 0,

(3)i
dφ

dx
+ [

E − V (x)
]
φ − M(x)θ = 0.

Eliminating the lower spinor component form Eqs. (2) and
(3), we obtain a second order differential equation, which con-
tains first order derivatives,

−d2φ

dx2
+

[
2EV (x) − V 2(x) − i

dV (x)

dx

− i
1

M(x)

dM(x)

dx

(
E − V (x)

)]
φ

(4)+ 1

M(x)

dM(x)

dx

dφ

dx
= [

E2 − M2(x)
]
φ.

We consider the smooth step mass

(5)M(x) = M0(1 + η tanhq αx),

where η is a very small non-negative parameter, and q is a
constant, q �= 0. Here, we have applied deformed hyperbolic
functions, which are defined as [31],

sinhq x = ex − qe−x

2
, coshq x = ex + qe−x

2
,

sechq x = 1

coshq x
, cosechq x = 1

sinhq x
,

(6)tanhq x = sinhq x

coshq x
, cothq x = coshq x

sinhq x
.

Recently, de Souza Dutra [32] found that the deformed hy-
perbolic functions can be reduced to the non-deformed ordi-
nary hyperbolic functions potentials by using the coordinate
translation transformation. When q = 1, the mass increases
from the value M = M0(1 − η) for x = −∞ to the value
M = M0(1 + η) for x = +∞. The significant variations are
occurring in the range of − 1

α
< x < 1

α
, i.e., M(−1/α) ∼=

M0(1 − 0.762η),M(1/α) ∼= M0(1 + 0.762η). The smooth step
mass with q = 1 has been studied by Dekar et al. [17] for a
smooth potential within the framework of the one-dimensional
Schrödinger equation with position-dependent mass. The ratio
of the derivative of the mass to the mass is given by

(7)
dM(x)/dx

M(x)
= αη(1 − tanh2

q αx)

1 + η tanhq αx
.

In the case of η → 0, we may ignore the terms that contain
the derivative of the mass in Eq. (4). This approximation can
lead us to reduce the Dirac equation (4) to the Klein–Gordon
form

−d2φ

dr2
+

[
2EV (x) − V 2(x) − i

dV (x)

dx

]
φ

(8)= [
E2 − M2(x)

]
φ.

We consider the one-dimensional generalized Hulthén potential

(9)V (x) = V0

e2αx + q
= V0

2q
(1 − tanhq αx).

After making the parameter replacements of α → α/2, q →
−q and V0 → −V0, the generalized Hulthén potential (9) be-
comes the form given by Egrifes et al. in Eq. (11) of Ref. [2].
When q = −1 and q = 1, this generalized Hulthén potential (9)
can be reduced to the standard one-dimensional Hulthén poten-
tial [12] and Woods–Saxon potential [13], respectively. Substi-
tuting Eqs. (5) and (9) into Eq. (8), we can obtain a Schrödinger-
like equation for the upper spinor component φ(x),

(10)

[
− d2

dx2
− V1 sech2

q αx − V2 tanhq αx

]
φ(x) = Ẽ2φ(x),

where the parameters V1, V2 and Ẽ are defined as the combina-
tions of some parameters,

(11a)V1 = − i

2
αV0 − V 2

0

4q
+ qη2M2

0 ,

(11b)V2 = EV0

q
− V 2

0

2q2
− 2ηM2

0 ,

(11c)Ẽ2 = E2 − (
1 + η2)M2

0 − EV0

q
+ V 2

0

2q2
.

We let z = 1+tanhq αx

2 and write the upper spinor component
wavefunction as φ(x) = z−p(1 − z)−wF(z), then Eq. (10) can
be reduced to the following form

z(1 − z)
d2F(z)

dz2
+ [−2p + 1 − (−2p − 2w + 1 + 1)z

]dF(z)

dz

−
[
(p + w)2 − p − w − V1

qα2
− ( Ẽ

2α
)2 + p2 − V2

4α2

z(1 − z)

(12)− −p2 + w2 + V2
2α2

1 − z

]
F(z) = 0.

If and only if the following two equations exist:

(13a)

(
Ẽ

2α

)2

+ p2 − V2

4α2
= 0,

(13b)−p2 + w2 + V2

2α2
= 0,

Eq. (12) can be reduced to a Gauss hypergeometric equation.
A solution of Eq. (12) can be written in Gauss hypergeometric
form as

φ(x) =
(

1 + tanhq αx

2

)−p(
1 − tanhq αx

2

)−w

(14)

× 2F1

(
−p − w + 1

2
−

√
V1

qα2
+ 1

4
,−p − w + 1

2

+
√

V1

qα2
+ 1

4
;−2p + 1; 1 + tanhq αx

2

)
.
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