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Abstract

This Letter contains three parts. First, it analyzes some basic properties of a new complex four-dimensional (4D) continuous autonomous
chaotic system, in which each equation contains a cubic cross-product term. The new system has 9 equilibria, which display graceful symmetry
with respect to the origin and the coordinate planes, and they have similarity associated with their linearized characteristics and along with invariant
manifolds. Second, under constant control, the system displays (i) two coexisting symmetric double-wing chaotic attractors simultaneously, and
(ii) two coexisting asymmetric double-wing and two coexisting single-wing attractors including chaotic, period-doubling, and periodic orbits. The
evolution process of an attractor from double-wing to single-wing is investigated via a distribution diagram of equilibria and bifurcation diagrams
of the system states. Finally, several circuits are built for different configurations of the new system, which show a good agreement between
computer simulations and experimental results, revealing some important distinctions in applications arising from different frequencies used.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Chaos has been intensively studied in the last four decades
within the science, mathematics and engineering communi-
cations [1,2]. Generating or enhancing chaos is important in
studying chaotic dynamics and their applications to encryp-
tion and communications, which are generally developed along
two directions: one approach is generating multi-scroll chaotic
attractors based on some existing chaotic systems such as
generalized Chua’s circuits by using some nonsmooth nonlin-
ear functions such as piecewise-linear (PWL) functions [3,4],
stair functions [5], hysteresis functions [6], and saturated func-
tions [7], etc. Those nonlinearities do not contain quadratic
terms, and the produced scrolls of chaotic attractors have cyclic
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shapes. It has been noticed that in the family of generalized
Chua’s circuits, periodic orbits rarely exist. Another approach
is searching for some new three-dimensional (3D) chaotic at-
tractors generated by systems like Chua’s circuit with cubic
nonlinearity [8] and generalized Lorenz systems with only
quadratic nonlinearity. For example, Vaněček and Čelikovský
[9] introduced the so-called generalized Lorenz system. More
recently, Chen, Lü et al. [10–12,21] found some similar but
nonequivalent chaotic systems. Furthermore, Čelikovský and
Chen [13] presented a generalized Lorenz canonical form, in-
cluding the hyperbolic-type, which covers a very large class
of 3D quadratic autonomous chaotic systems. Generally, these
generalized Lorenz systems display one single chaotic attractor
with two butterfly wings, which is different from the attrac-
tors of generalized Chua’s circuits at least in shape. Recently,
Qi et al. [20] constructed a new 4D autonomous chaotic sys-
tem, which has cubic cross-product nonlinearity in each equa-
tion. This system can generate complex dynamics within wide
parameters ranges, including chaos, Hopf bifurcation, period-
doubling bifurcation, periodic orbit, sink and source, and so on.
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The main objective of this Letter is to carry out some basic
analysis on the new 4D chaotic system, showing that it has 9
symmetric real equilibria with respect to the origin and the co-
ordinate planes, respectively, which are divided into three types
according to their similarity with respect to some linearization
characteristics. The Letter also carries out some simulations,
showing that the system can display: (i) two coexisting symmet-
ric double-wing chaotic attractors, (ii) two coexisting asymmet-
ric double-wing chaotic attractors and two single-wing chaotic
attractors, respectively, under constant control. It is furthermore
to investigate the evolution process from double-wing to single-
wing via a distribution diagram of equilibria, and to analyze
bifurcation diagrams of the system states. Finally, the Letter
reports several circuits design, showing a good agreement be-
tween computer simulations and experimental results.

2. Some basic properties of the four-dimensional system

The 4D autonomous system is described by [20]

ẋ1 = a(x2 − x1) + x2x3x4,

ẋ2 = b(x1 + x2) − x1x3x4,

ẋ3 = −cx3 + x1x2x4,

(1)ẋ4 = −dx4 + x1x2x3,

where xi (i = 1,2,3,4) are the state variables, and a, b, c, d are
positive constant parameters.

2.1. Equilibria

To further analyze the system, a good place to start to find
its equilibria, thereby characterizing the behaviors of solutions
near these points based on the linearized system. The distrib-
ution and linearized characteristics of the equilibria influence
the dynamics of the system. The equilibria of system (1) can be
found by solving the following algebraic equations simultane-
ously:

a(x2 − x1) + x2x3x4 = 0, b(x1 + x2) − x1x3x4 = 0,

(2)−cx3 + x1x2x4 = 0, −dx4 + x1x2x3 = 0.

By calculation, one can find 9 real equilibria including zero,
which can be classified into three kinds, and each kind has the
same eigenvalues (see Remark 4). Let

q = √
cd, p =

√
a2 + 6ab + b2,

g = p + a + b, h = p − a + b,

m = p − a − b, n = p + a − b,

x1
1 = √

gq/(2a), x1
2 = √

2aq/g,

(3)x1
3 = √

hd/(2q), x1
4 = √

hq/2d,

x2
1 = √

mq/(2a), x2
2 = √

2aq/m,

(4)x2
3 = √

nd/(2q), x2
4 = √

nq/(2d).

The first kind of nonzero equilibria includes

S1 = [
x1

1 , x1
2 , x1

3 , x1
4

]
, S2 = [−x1

1 ,−x1
2 , x1

3 , x1
4

]
,

(5)

S3 = [
x1

1 , x1
2 ,−x1

3 ,−x1
4

]
, S4 = [−x1

1 ,−x1
2 ,−x1

3 ,−x1
4

]
.

The second kind of nonzero equilibria includes

S5 = [
x2

1 , x2
2 , x2

3 , x2
4

]
, S6 = [−x2

1 ,−x2
2 , x2

3 , x2
4

]
,

(6)

S7 = [
x2

1 , x2
2 ,−x2

3 ,−x2
4

]
, S8 = [−x2

1 ,−x2
2 ,−x2

3 ,−x2
4

]
.

The third kind of equilibria is the zero equilibrium S0 =
[0,0,0,0].

Note that these equilibria have some symmetry with respect
to origin or the coordinate planes, attributing to the symmetry
of system (1).

2.2. Symmetry and invariance

Remark 1. System (1) is symmetric with respect to the coor-
dinate plane x3–x4, which is easily proved via the following
transformation:

(7)(x1, x2, x3, x4) → (−x1,−x2, x3, x4).

For convenience, use Si,j to denote the pair of Si and Sj ,
i, j = 1, . . . ,9. From (5) and (6), equilibria S1,2 and S5,6 are
symmetric pairs with respect to plane x3–x4, which correspond
to the property stated in Remark 1.

Remark 2. System (1) is symmetric with respect to the coor-
dinate plane x1–x2, which is proved via the following transfor-
mation:

(8)(x1, x2, x3, x4) → (x1, x2,−x3,−x4).

Similarly, there are two pairs of symmetric equilibria, S3,4 and
S7,8 with respect to the x1–x2 plane.

Remark 3. System (1) is symmetric with respect to the origin,
which is proved via the following transformation:

(9)(x1, x2, x3, x4) → (−x1,−x2,−x3,−x4).

It can be verified that Si , i = 1, . . . ,4, are symmetric equilibria
with respect to the origin, and do Si , i = 5, . . . ,8.

2.3. Similarity

By linearizing system (1) at S0, one obtains the Jacobian as
follows:

(10)A0 =



−a a 0 0
b b 0 0
0 0 −c 0
0 0 0 −d


 .

The eigenvalues of matrix A0 are

λ01 = 1

2
(b − a + p), λ02 = 1

2
(b − a − p),

(11)λ03 = −c, λ04 = −d,
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