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Abstract

We advance a prescription to randomize physical or algorithmic Random Number Generators (RNG’s) that do not pass Marsaglia’s DIEHARD
test suite and discuss a special physical quantifier, based on an intensive statistical complexity measure, that is able to adequately assess the
improvements produced thereby. Eight RNG’s are evaluated and the associated results are compared to those obtained by recourse to Marsaglia’s
DIEHARD test suite. Our quantifier, which is evaluated using causality arguments, can forecast whether a given RNG will pass the above

mentioned test.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Random Number Generators (RNG) are extensively used
in physics and engineering. In point of fact, most computer
systems possess RNG’s, although not all of them are of good
enough quality for statistical purposes. Recourse to special
physical devices is also made so as to produce RNG’s. It is
then appropriate to classify RNG’s as either “physical” or “al-
gorithmic” ones. A very important RNG-issue is its adequate
testing for specific applications such as encryption schemes
and/or sophisticated Monte Carlo simulations. An easily avail-
able and very stringent statistical test-suite is that provided by
Marsaglia [1]. In his website one finds two impressive contri-
butions to the problem: (a) an RNG obtained by mixing algo-
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rithmic and physical generators, and (b) a complete RNG-test
suite (called “DIEHARD”). The above referred to mixing is re-
quired because, quoting Marsaglia, “no physical devices I have
considered pass the stringent randomness requirements of my
DIEHARD battery of tests. But the deterministic methods do”.
In fact, he used the algorithmic RNG’s to get good statistical
properties and the physical devices to make the RNG’s unpre-
dictable.

In physics one assumes that a model can be manufactured for
any system of interest and, in a sense, unpredictability may be
understood as meaning that the model’s features are not already
known in sufficient detail. Furthermore, a complex dynamics
does not imply a complex model if nonlinearity is present; low-
dimensional chaotic dynamical systems are nice examples of
such an assertion. Consequently, chaotic systems are good can-
didates to model devices used to produce physical RNG’s.

The latest available version of Marsaglia’s DIEHARD pro-
duces a matrix with about three hundred values as a Test Sum-
mary. These values are expected to be distributed in a rather
close fashion to the uniform distribution in the interval [0, 1).
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A global quantifier is also provided by a KStest (Kolmogorov—
Smirnov test) for the same interval.

The present effort purports to effect two main contributions
to the above, ongoing discussion: (1) a prescription to random-
ize those physical or algorithmic RNG’s that do fail to pass the
DIEHARD test suite; and (2) advancing the use of a special
physical quantifier, based on an intensive statistical complex-
ity measure (MPR statistical complexity [2-5]), to assess the
improvements achieved by recourse to the prescription of (1)
above. This quantifier takes causality effects into account. Eight
RNG’s are evaluated and the concomitant results are compared
to those obtained by recourse to Marsaglia’s DIEHARD test
suite.

Our work should be of relevance for Monte Carlo simu-
lations [6], cryptography [7], communications theory [8] and
some aspects of nanotechnology [9]. From a theoretical point
of view it is of interest to point out that we are here linking
the concept of Kolmogorov—Chaitin’s algorithmic complexity
[10] with that of statistical complexity. The former is ade-
quately treated according to the so-called Pompe [11] proce-
dure, adopted in this Letter to assign a probability distribution
P to a given time series.

2. Methodology

In a recent contribution, Lépez-Ruiz, Mancini and Calbet
(LMC) have proposed a statistical complexity measure (SCM)
based on the notion of “disequilibrium” as a quantifier of the
degree of physical structure in a time series [12]. Given a prob-
ability distribution associated with a system’s state, the LMC
measure is the product of an entropy H times a distance to
the uniform-equilibrium state Q. It vanishes for a totally ran-
dom process. Martin, Plastino and Rosso (MPR) [2] improved
on this measure by modifying the distance-component (in the
concomitant probability space). In Ref. [2], Q is built-up using
Wootters’ statistical distance while H is a normalized Shannon-
entropy. Regrettably enough, the ensuing statistical complex-
ity measure is neither an intensive nor an extensive quantity,
although it yields useful results [3]. Also, a reasonable com-
plexity measure should be able to distinguish among different
degrees of periodicity and it should vanish only for periodic-
ity unity. In order to attain such goals any natural improvement
should give this statistical measure an intensive character. Lam-
berti, Martin, Plastino and Rosso [4] obtained a statistical com-
plexity measure (SCM) that is (i) able to grasp essential details
of the dynamics, (ii) an intensive quantity, and (iii) capable of
discerning among different degrees of periodicity and chaos.
Such complexity measure is the one to be employed here to deal
with RNG’s. It has been shown in Refs. [3,4] that the MPR in-
tensive statistical complexity measure provides one with more
detailed information than the one obtained using just Shannon’s
entropy, which may confuse high degree of chaoticity with ran-
domness.

Evaluation of the probability distribution P associated to a
dynamical system or time series under study is a physical prob-
lem. Additional improvements can be expected if the underly-
ing probability distribution is “extracted” by more appropriate

consideration regarding causal effects in the system’s dynam-
ics.

The essence of symbolic dynamics is to associate a sym-
bol sequence with each trajectory of a continuous or discrete
dynamical system, by means of a suitable partition of the state-
space. This process is described in the context of a delay-
embedding of the time series into a d-dimensional space in
Ref. [13]. Special generating partitions yield in the limit for
a fine resolution the Kolmogorov—Sinai entropy. But these
partitions are very difficult to ascertain even in the case of
two-dimensional systems. Bandt and Pompe [11] advanced a
method that “naturally” determines the adequate symbol se-
quence from the time series’ values, without further model as-
sumptions. They determine partitions of the state-space given
by comparison of neighboring series’ values. For any given se-
ries they look for certain ordinal patterns of order d. From
the symbol occurrence frequency, they deduce a permutation
probability distribution [11,14,15]. The advantages of Bandt
and Pompe’s method reside in (i) its simplicity, (ii) extremely
fast calculation-process, (iii) robustness, and (iv) invariance
with respect to nonlinear monotonous transformations. Using
Kolmogorov—Chaitin’s algorithmic complexity is another re-
course that could be taken advantage of to overcome these
problems, although this poses is much more difficult task.

All the RNG’s assessed in this Letter are deterministic but
some of them come from “discretised” chaotic differential
equations that may be thought of as models for real physical
processes (physical RNG’s) while others come from recurrence
rules (algorithmic RNG’s). In order to convert any of them into
an electronically realizable RNG, the following scheme is to
be applied. (Step 1): a discretising process followed by a bi-
ased, scaling transformation that transforms our RNG-“signal”
into natural numbers belonging to the interval [0, 2" — 1]; af-
ter this step, each random number can be regarded as an n-bit
word. (Step 2): a bit stream is assigned to each word. The
length of this bit stream can be selected in different ways, the
simplest one being to use all the bits of each word (ALL ver-
sion). By generating five-million 16-bits-words we obtain an 80
million bit stream. We demonstrate below that this procedure
yields poor results. It is much better to store just a portion of
each word. In this Letter we follow, two strategies: (a) we use,
for each n-bit-word’s, only the most significative bit' (MSB
version) to generate the bit stream. This is equivalent to the
standard symbolic dynamic procedure of assigning a “1” if the
number belongs to the range [2"~!,2" — 1] and a “0” if it lies
within [0, on=1_ 1]. (b) Pick up, for each n-bit-word’s, only the
least significative bit (see footnote 1) (LSB version) to generate
the bit stream. This bit represents a small perturbation and our
results show that option LSB is the best one because it elimi-
nates low frequency components of the Fourier spectrum. The
bit streams obtained with the above described procedures (ALL,
MSB, and LSB) are grouped again into m-bit-words and the
MPR intensive statistical complexity measure [4] is now eval-

I Most (least) significative in the sense of most (least) important. Not to be
confuse with the statistical significance.
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