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a  b  s  t  r  a  c  t

We  examine  the  solution  of  the  two-dimensional  Cahn–Hilliard-reaction  (CHR)  equation  in the  xy plane
as a model  of  Li+ intercalation  into  LiFePO4 material.  We  validate  our  numerical  solution  against  the
solution  of  the depth-averaged  equation,  which  has been  used  to model  intercalation  in  the  limit  of
highly  orthotropic  diffusivity  and  gradient  penalty  tensors.  We  then  examine  the  phase-change  behaviour
in the full  CHR  system  as  these  parameters  become  more  isotropic,  and  find  that  as  the Li+ diffusivity  is
increased  in  the  x direction,  phase  separation  persists  at high  currents,  even  in  small  crystals  with  isotropic
coherency  strain  included.  The  resulting  voltage  curves  decrease  monotonically,  which  has  previously
been  considered  a hallmark  of  crystals  that  fill  homogeneously.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, phase-field models have been used to simu-
late various properties of LiFePO4 material [1–6]. These phase-field
models typically result in the concentration distribution of Li+

being represented by the solution of the fourth-order Cahn–Hilliard
(CH) equation. The CH equation is a thermodynamically consis-
tent approach to modelling phase-separating materials, where the
phase interface is “diffuse”. This is in contrast to the sharply defined
interface assumed in Stefan equation models that have tradition-
ally been used to represent phase-separation in LiFePO4 [7–9].
The CH equation is normally closed with no-flux boundary con-
ditions, however Singh et al. [3] coupled a reaction condition to
the boundary of a crystal, which drives Li+ intercalation in the
material, to arrive at the so called Cahn–Hilliard-reaction (CHR)
system. Singh et al. [3] then examined the properties of a simpli-
fied second-order, depth-averaged equation derived from the CHR
system. In particular, Bai et al. [5] showed that applying a large
fixed current to the depth-averaged equation results in LiFePO4
material that fills homogeneously, which helps explain the high-
rate behaviour of nanoscale LiFePO4. Cogswell and Bazant [6] also
included coherency strain to this model system, and found that this
further suppresses phase-separation.
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Up to this point, analysis of the phase-separating behaviour of
LiFePO4 under a fixed current has been performed on the simplified
depth-averaged equation. For example, Tang et al. [2] investigated
the use of the full CHR system in LiFePO4, though not under a
fixed current and hence no connection was  made to the suppres-
sion of phase-separation. The depth-averaged equation is derived
by assuming Li+ transport in the crystal is one-dimensional, in
the y direction. For small, defect-free nanocrystals, this is likely
to be an excellent approximation. In this work, we examine the
behaviour of the full CHR system under parameter regimes where
the depth-averaged equation is no longer valid. The numerical solu-
tion of the fourth-order, nonlinear CHR system is however, very
difficult to compute. Previously, we  presented a general numer-
ical method for solving the CHR system on an unstructured grid
[10]. We  use this numerical approach to solve the CHR IBVP,
and validate our numerical solution against the depth-averaged
equation by assuming one-dimensional Li+ transport. We  then
alter both the gradient penalty and diffusivity tensors (K̃ and D,
respectively).

In a one-dimensional regime, the gradient penalty in the y direc-
tion, K̃yy, is assumed to be large, given that phase-boundaries in the
y direction have not been observed experimentally. We  examine
the behaviour of the CHR system as this parameter is decreased.
We  then modify D, altering the Li+ transport in the crystal from
a one-dimensional process to a two-dimensional process. This is
motivated by recent experimental and theoretical [11,12] work
that shows Li+ transport in LiFePO4 material that contains anti-
site defects is at least a two-dimensional process. Examining the
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Fig. 1. Schematic of a LiFePO4 crystal undergoing intercalation at a low current with-
out  anisotropic strain. The x, y and z axes correspond to the a, b and c crystallographic
planes.

phase-change behaviour at high currents with two-dimensional Li+

transport reveals complex dynamics that cannot be captured by a
depth-averaged equation.

2. Model equations

We  begin with a brief overview of the phase-field equations
[3–5] used to model the intercalation of Li+ into a crystal of LiFePO4.
Fig. 1 shows a schematic of a single crystal of LiFePO4 of length Fx,
Fy and Fz in each of the spatial dimensions, which has undergone
phase-separation. The phase-boundary in Fig. 1 is aligned parallel to
the z-axis, which is indicative of phase separation without the inclu-
sion of anisotropic strain [6].  A region of highly lithiated material
(Li1−�FePO4, where � � 1) is moving throughout the crystal in the x
direction. A “mushy” region of length �x separates the Li1−�FePO4
phase from the lowly lithiated phase (Li� FePO4, where � � 1) and it
is in this region where charge is inserted into the crystal according
to the reaction,

FePO4 + Li+ + e−discharge
�

charge
LiFePO4. (1)

We will also refer to �y and �z as the length of the phase-separated
region in the y and z direction, respectively, though Fig. 1 does not
show phase-separation in either of these directions.

At early and late times with a low applied current, the crystal
fills homogeneously. This process is not shown in Fig. 1 and involves
Li+ intercalating into the empty crystal to form Li� FePO4 before
phase-separating. The phase boundary then moves throughout the
crystal as shown in Fig. 1, until the entire crystal is composed of
Li1−�FePO4. Homogeneous filling then continues until the crystal
reaches the fully lithiated state LiFePO4. The dynamics of a phase-
field model capture all of this behaviour without assuming that
a phase-boundary exists (which is unlike a shrinking-core model
[7,9]).

We assume that the crystal shown in Fig. 1 is comprised of an
ordered series of unit lattice cells of volume Vcell (m3) with Nsv indi-
vidual Li+ intercalation sites per unit cell. We  can write the exposed
area of a unit cell on the xz plane at y = Fy as Acell (m2), with Nss of
the Nsv sites in the unit cell directly exposed to the reaction on
the surface. The average area of a single intercalation site can then
be written as As = Acell/Nss (m2). The constant site density is given
by � = Nsv/Vcell (m−3), and the surface site density by �s = Nss/Acell
(m−2). Each surface site is associated with an ion channel along
which Li+ is transported from the surface of the crystal to the inte-
rior. As shown in Fig. 1 the ion channels extend in the y direction and
are associated with a single reaction site, with NH = �AsFy lithium
sites in each channel. Over both of the xz facets at y = 0 and y = Fy,

we have NAs = 2FxFz/As active surface sites (or twice the number of
ion channels).

The distribution of Li+ in the crystal can be described by the
Cahn–Hilliard-reaction equation and a depth-averaged version of
the CHR equation [3,4,13,5]. The following sections briefly describe
the CHR and depth-averaged equations, and comment on the
assumptions necessary (as outlined in detail by Burch [14]) to
derive the depth-averaged equation.

2.1. Cahn–Hilliard-reaction equation

We  adopt the notation of Burch [14] and assume that the free
energy in our system is given by the CH functional [15] G[c(x, t)]
(J), where c(x, t) ∈ [0, 1] is the concentration of Li+ in a LiFePO4
crystal (nondimensionalised by �), with spatial coordinates x (m),
through time t (s). For a more detailed derivation of the following
model equations, we  refer the reader to Refs. [14,15]. On an ND-
dimensioned domain � with boundary � the free energy in a CH
model can be written as

G(t) ≡ G[c(x, t)] =
∫

�

[
ghom(c) + 1

2
(∇c)T K(∇c)

+B(n̂0)
2�

(c − cavg)2

]
� d�, (2)

where ghom (J) is the free energy per molecule of a homogeneous
system at a uniform concentration and K (J m2) is a gradient penalty
tensor, which we have assumed is symmetric positive definite,
orthotropic and constant (where the diagonal elements of this
tensor follow from the width of the phase-boundaries in each direc-
tion). The final term in the free energy functional isotropically
approximates the effect of coherency strain in the crystal [16,17,6],
where B(n̂0) (Pa) is the elastic energy in the minimising direction
n̂0 and cavg is the average concentration of Li+ over �. In Section
4, we  examine the phase-separation dynamics in both the simple
strain-free case and with isotropic coherency strain included.

We assume ghom obeys a regular solution model [14,5,15,18]
and is written as

ghom(c) = �mc(1 − c) + 2kBT(cIn(c) + (1 − c)In(1 − c)), (3)

where kB (J K−1) is Boltzmann’s constant, T (K) is the temperature
and �m (J) is the enthalpy of mixing per site. Writing (1) as

LiFePO4 − FePO4 � Li+ + e−, (4)

the chemical potential of the LHS of (4) is called the diffusional
chemical potential � (J). This is the potential of Li+ in the lattice,
per molecule. Noting (3),  the variational derivative of (2) [19] gives
us the diffusional chemical potential,

�(x, t) = �m(1 − 2c) + 2kBT In
(

c

1 − c

)
− ∇ · (K∇c)

+ B(n̂0)
�

(c  − cavg) = kBT In a(x, t), (5)

where a is the activity of the Li+ in the lattice.
The mass flux j (m−2 s−1) per molecule is proportional to a gra-

dient in chemical potential, namely

j(x, t) = �cM∇�, (6)

where M (m2 J−1 s−1) is a mobility tensor. As mass is conserved in
this system, the Cahn–Hilliard equation is given by

∂c

∂t
+ 1

�
∇ · j = 0, x ∈ �. (7)

The CH equation (7) can also be rewritten directly in terms of the
concentration c(x, t) and using the Einstein relation to write the
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