

Available online at www.sciencedirect.com

Physics Procedia

Physics Procedia 81 (2016) 53 - 56

28th International Symposium on Superconductivity, ISS 2015, November 16-18, 2015, Tokyo, Japan

Single-crystal growth and superconducting state of $LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})_2$

Y. Terui^{*a*}, K. Saito^{*b*}, N. Kase^{*,*a*}, T. Nakano^{*a*} and N. Takeda^{*b*}

^aGraduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan. ^bDepartment of Materials Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan.

Abstract

Single crystals of LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})₂ were grown by a CsCl-flux method. Electrical resistivity $\rho(T)$ measurements were performed to reveal its superconducting properties. The $\rho(T)$ of the single crystal shows semiconducting-like behavior and superconducting transition at 3.4 K. The value is slightly higher than that of the polycrystalline sample with substitution amounts of x = 0.2 ($T_c \sim 2.5$ K). From $\rho(T)$ measurements in several magnetic fields, $\mu_0 H_{c2}^{//ab}(0)$ and $\mu_0 H_{c2}^{//c}(0)$ are estimated to be 17.2 T and 0.59 T, respectively. The superconducting anisotropic parameter γ is determined to be 29.2.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the ISS 2015 Program Committee

Keywords: superconducto; BiS2-based compound

1. Introduction

Since the discovery of superconductivity with superconducting transition temperature T_c at 8.6 K in the layered bismuth oxysulfide Bi₄O₄S₃ [1], other BiS₂-based superconductivity have been studied. LaOBiS₂ crystallizes with a space group *P*4/nmm (No. 129) and this structure is composed of alternating superconducting BiS₂ layers and blocking LaO layers, which are similar to Fe-based superconductors. Substituting F for O induces superconductivity with $T_c = 2.5$ K [2], as well as tetravalent elements (Ti, Zr, Hf and Th) for La [3]. In addition, by replacing S atoms

^{*} Corresponding author. Tel.: +81-025-262-7541 E-mail address: n-kase@eng.niigata-u.ac.jp

to Se atoms, T_c is enhanced: $T_c = 4.2$ K for LaO_{0.5}F_{0.5}BiSSe [4], 3.7 K for LaO_{0.5}F_{0.5}BiSe₂ [5]. The enhancement of T_c in Se doped compounds is induced by an in-plane chemical pressure [6].

In this article, we report the single crystal growth of $LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})_2$ and its superconducting properties. In order to clarify superconducting state, we measured the electrical transport properties of $LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})_2$ at low temperature and strong magnetic fields up to 11 T.

2. Experimental Details

Single crystals of LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})₂ were grown by a CsCl-flux method similar to the previous reports [5,6]. The starting materials of 0.8 g and CsCl of 5 g were mixed and sealed in an evacuated quartz tube. The tube was heated up to 880 °C in 10 h and to 900 °C in 2 h, then kept for 10 h and cooled down to 650 °C for 125 h. The obtained materials were washed by water, ethanol, and acetone in order to remove the flux materials. The obtained single crystals were plate-like shape with approximately $1.0 \times 1.0 \text{ mm}^2$. The crystal structure of the single crystal was examined by an X-ray diffraction (XRD) method using a conventional X-ray spectrometer equipped with Cu-K α radiation and a monochromator (RAD-2X, Rigaku). Electrical resistivity $\rho(T)$ from 0.5 K to 300 K was measured under magnetic fields up to 11 T along the *ab*-plane and *c*-plane by dc-four-probe method in a ³He cryostat (Oxford Heliox VL).

3. Experimental Result

3.1. X-ray diffraction

Figure 1 shows the XRD diffraction pattern of several single crystals $LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})_2$ at room temperature. Only (00*l*) diffraction peaks were observed, indicating the crystallographic *c*-axis is perpendicular to the crystal plane. All the reflections can be indexed as the space group of *P*4/nmm and no extra peaks due to impurity phase can be detected from the XRD pattern. To estimate lattice constants, powder X-ray diffraction was performed by using powder crashed from single crystals. The lattice constants of $LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})_2$ are obtained to be *a* = 4.0856 Å and *c* = 13.453 Å. These values are slightly larger than those of the single crystal $LaO_{0.5}F_{0.5}BiS_2$, which suggest that S atoms are substituted with Se atoms.

Fig. 1. XRD diffraction pattern of single crystals $LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})_2$ at room temperature.

3-2. Electrical resistivity

Figure 2 shows temperature dependence of the electrical resistivity $\rho(T)$ of LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})₂ down to 0.5 K with electrical current along the *ab*-plane. A semiconducting-like behavior was observed and superconducting transition was detected. T_c is defined as 50 % drop from residual resistivity ρ_0 and determined to be 3.4 K. ρ_0 is defined at just above T_c ($\rho_0 = 3.5 \text{ m}\Omega \text{ cm}$). Compared with polycrystalline sample of LaO_{0.5}F_{0.5}Bi(S_{0.8}Se_{0.2})₂ [7],

Download English Version:

https://daneshyari.com/en/article/1873156

Download Persian Version:

https://daneshyari.com/article/1873156

Daneshyari.com