Available online at www.sciencedirect.com ## **ScienceDirect** Physics Procedia Physics Procedia 81 (2016) 117 - 120 28th International Symposium on Superconductivity, ISS 2015, November 16-18, 2015, Tokyo, Japan # Critical current properties in longitudinal magnetic field of YBCO superconductor with APC R. Kido^a, M. Kiuchi^{a*}, E. S. Otabe^a, T. Matsushita^a, A. K. Jha^b, K. Matsumoto^b ^aDepartment of Computer Science and Electronics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan ^bDepartment of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka, 804-8550, Japan #### Abstract The critical current density (J_c) properties of the Artificial Pinning Center (APC) introduced YBa₂Cu₃O₇ (YBCO) films in the longitudinal magnetic field were measured. Y₂O₃ or Y₂BaCuO₅ (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO₃ single crystal substrate. The sizes of Y₂O₃ and Y211 were 5—10 nm and 10—20 nm, respectively. As a result, J_c enhancement in the longitudinal magnetic field was observed in Y₂O₃ introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that J_c properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor. © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the ISS 2015 Program Committee Keywords: REBCO; longitudinal magnetic field; artificial pinning center; critical current density #### 1. Introduction The REBa₂Cu₃O_y (REBCO; RE = Rare Earth) coated superconductors have the large critical current density (J_c) up to the high magnetic fields, and also have the high critical temperature (T_c). Since REBCO coated superconductors have high T_c , applications using them can be operated in the liquid nitrogen. The running cost of the device which uses the liquid nitrogen is cheaper than that of the device which uses the liquid helium. Therefore, the REBCO *corresponding author: Tel.: +81-948-29-7661; fax: +81-948-29-7661.E-mail address: kiuchi@cse.kyutech.ac.jp coated superconductors are expected to be applied to the various superconducting applications such as the electric power transmission cable, the current limiting device, and so on [1, 2, 3]. In the longitudinal magnetic field in which the magnetic field is parallel to the current flow, Lorentz force does not work to the magnetic flux lines. Thus, J_c in the longitudinal magnetic field is larger than that in the perpendicular magnetic field [4]. There are some reports of J_c in the longitudinal magnetic field for the metallic superconductors [5, 6]. Cullen et al reported that J_c properties in the longitudinal magnetic field of Nb₃Sn superconductor film is 10 times larger than that in self-magnetic field, and the enhancement of J_c is largely depended on the pinning force by different kinds of dose of the neutron irradiation [6]. Recently, Tsuruta et al reported that J_c enhancement in the longitudinal magnetic field from J_c in the self-magnetic field in SmBa₂Cu₃O_y superconducting film with the Artificial Pinning Center (APC) below 0.6 T. The enhancement of J_c was observed only APC introduced specimen [7]. It is concluded that the introduction of APC is effective for the enhancement of J_c properties in the longitudinal magnetic field. Therefore, it is necessary to investigate the effect of the enhancement of J_c in the longitudinal magnetic field by the APCs properties such as the size, the shape and so on. In this paper, J_c properties of REBCO specimens with the different size and amount of APC are measured, and the relationship between the properties of APCs and J_c in the longitudinal magnetic field is discussed. #### 2. Experimental procedure The YBa₂Cu₃O_y (YBCO) films that used in the present work were fabricated on SrTiO₃ single crystal substrate by the pulsed laser deposition (PLD) method. Y₂O₃ or Y₂BaCuO₅ (Y211) was introduced as APCs to YBCO by the target-modified method [8]. In this method, the target with a small piece of APC seeds was used. The quantity of Y₂O₃ is 3 area% and 4 area%, respectively. And the quantity of Y211 is 2 area% and 4 area%, respectively. The shape of Y₂O₃ and Y211 were the particle, and the size were 5—10 nm and 10—20 nm, respectively. Hence the size of Y₂O₃ is smaller than that of Y211. The ratio of pinning center in the superconducting layer of Y211 is larger than that of Y₂O₃, since the size of Y211 is larger than that of Y₂O₃ as shown in Table 1. The thicknesses of the APC doped YBCO layer of Y₂O₃ and Y211 were 170 nm and 300 nm, respectively. Since it is difficult to control the thickness, samples thickness varies. Micro bridge of 80 µm width and 1 mm length was fabricated in the YBCO layer with the APC of each specimen. *E-J* properties of each specimen were measured by the four-probe method. The value of J_c of each specimen was evaluated by using the electric field criteria: $E_c = 1.0 \times 10^4$ V/m. J_c properties were measured under the longitudinal or the perpendicular magnetic field, in the range from 0 T (self-field: s. f.) to 0.5 T. The arrangement of current J and external magnetic field B is shown in Fig. 1. All experiments were performed in liquid nitrogen. Specifications of specimens are listed in Table 1. | Table 1: Specifications of specimens | | | | | |--|----------|----------|-----------|-------------------------| | | shape of | size of | thickness | $J_{\rm c}({\rm s.f.})$ | | | APCs | APCs[nm] | [nm] | $[GA/m^2]$ | | YBCO | particle | 5—10 | 170 | 49.0 | | +4 area% Y ₂ O ₃ | particic | 5—10 | 170 | 4 2.0 | | YBCO | particle | 5—10 | 170 | 40.1 | | +3 area% Y ₂ O ₃ | particie | 3—10 | 170 | 40.1 | | YBCO | particle | 10—20 | 300 | 19.9 | | +4 area% Y211 | | | | | | YBCO | particle | 10—20 | 300 | 16.2 | | +2 area% Y211 | Purticio | 10 20 | | 10.2 | #### 3. Results and discussion Fig. 2 shows the magnetic field dependence of J_c properties of each specimen in the longitudinal magnetic field and the perpendicular magnetic field. The enhancement of J_c in the longitudinal magnetic field from that in self- ### Download English Version: # https://daneshyari.com/en/article/1873172 Download Persian Version: https://daneshyari.com/article/1873172 <u>Daneshyari.com</u>