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Abstract

Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework
for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce
energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, col-
lectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review
surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by
inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium
stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presen-
tation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle
and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and
life sciences, including Kac, Boltzmann, Jager–Segel and the thermostatted (continuous and discrete) kinetic for active particles
models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics
systems, crowds and swarms dynamics.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction and motivations of the review

Complex phenomena arising in physics and life sciences systems emerge from interactions occurring in nonlinear
fashion among many elements of the system that as a whole exhibits one or more properties (emerging behaviors) not
obvious from the properties of the individual parts [12]. Mathematicians and physicists have long hoped that these col-
lective behaviors could be described using the ideas and methods of statistical mechanics. Indeed different approaches
inspired to equilibrium or nonequilibrium statistical mechanics have been developed, adapted and employed in an at-
tempt to describe collective behaviors and macroscopic features as the result of microscopic (individual) interactions,
[37,101,124,145,160,194,217].

Complex behaviors appearing when we deal with the inert matter are very different by complex phenomena ap-
pearing in living systems. Indeed the emerging behaviors are also consequence of the ability of individuals to develop
specific and autonomous strategies. As a matter of fact, what it is found especially interesting about the behavior of
multicellular organisms emerges from interactions among many cells, and the most striking behaviors of animal popu-
lations are similarly collective. Nevertheless the main difficulty in living systems is that they are not really equilibrium
statistical mechanics problems, therefore there is no guarantee that we can find relevant macroscopic variables, e.g.
the spin glass is the correct description of a neural network, see papers [193,206,208] and the references therein, but it
is not clear how to measure the analog of the magnetic susceptibility. Moreover, what is really hard in complex living
systems is the existence and modeling of asymptotic nonequilibrium stationary states.

The complexity in the stationary states of living systems relies on their structure that is not well ordered as a crystal
but it is not chaotic and disordered like a gas. Further, a constant flow of energy and material through the system
maintains these states far from equilibrium. Statistical mechanics has suggested to characterize these states by means
of the theory of self-organized criticality that has been originally applied for the modeling of inert matter systems but
recently has been proposed also for living systems, see [7,120,161,162,165,168,181,185,191].

Critical phenomena are typical of equilibrium systems, but there are very few cases where equilibrium properties
are relevant to life. Criticality, however, is a much more general concept than its instantiation by phase transitions in
equilibrium systems. The description of statistically stationary states of living systems can be performed by a proba-
bilistic approach: the probability of finding the system in a particular state is governed by a probability distribution
that is mathematically equivalent to the Boltzmann distribution for a system poised at a critical point.

Usually in critical phenomena there are some natural macroscopic variables with a singular dependence on param-
eters that can be controlled experimentally, e.g. the critical point of a gas can be identified by measuring the density
of the fluid as a function of temperature and pressure. Criticality can be also identified in purely thermodynamic
measurements, i.e. looking the behavior of the correlation function of fluctuations in some local variable.

Experimental evidence of criticality have been observed in a wide variety of complex living systems, especially
biological systems, spanning all possible scales, from individual proteins to whole populations of animals with high
cognitive capacity, such as schooling fish, swarming insects or flocking birds [155]. Indeed seems that the collective
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