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Abstract

We present a variational formulation of the governing equations and introduce global indicators to describe the behavior of

acoustofluidic devices driven at resonance frequencies by means of a piezoelectric transducer. The individuation of the correct

Lagrangian densities for the different parts constituting the device (the piezo transducer, the silicon walls, the fluid-filled mi-

crochannel, and the glass lid) allows for the introduction of the weak formulation used in the finite element discretization of the

equations describing the system in its oscillatory regime. Additionally, the knowledge of the Lagrangian density leads to the

derivation of the correct structure of the Hamiltonian density, i.e. the energy density, which is important for the quantification of

the energy content of the whole system and its individual parts. Specifically, the energy content of the embedded microchannel is

quantified by means of the acoustofluidic yield η defined as the ratio between the energy in the channel and the total energy. From

the standpoint of acoustophoretic application, the introduction of the acoustophoretic mean orientation allows us to identify the

frequencies for which an acoustophoretic effect, i.e. the lateral motion of particle dragged by the axial main flow, is particularly

strong. Finally, the connection between the mechanical and electrical degrees of freedom of the system is addressed. This is

important for proper determination of the dissipated power, and it may lead to the detection of resonance states by means of purely

electrical measurements. Numerical simulations and preliminary experimental results show some features of the model introduced.
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1. Introduction

Acoustophoretic devices represent an efficient and easy-to-set-up method for the manipulation of biological sam-

ples. Indeed, this method has been shown to be able to manipulate cell lines as well as micrometric-sized beads (1; 2),

by simply using an embedded microfluidic channel, or a capillary, in connection with the presence of a piezoelec-

tric actuator that in the simplest cases can be glued to the structure containing the micro-channel (3). Despite the

advantages in using this kind of technique with respect to other manipulation methods, e.g. (di-)electrophoresis and

magnetophoresis, the identification of optimal working frequencies is yet entrusted with the presence of the operator,

who has to search manually for resonance frequencies that afterwards can be tracked with the aid of electric mea-
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surements. Furthermore, the design of acoustofluidic systems deserves additional investigations, since optimization

of the geometric configuration of the device as well as the material properties can point out better ways to improve

the effectiveness of the separation process and lead to a broadening of the range of applicability.

To this end, the present manuscript addresses objective global indicators that aid both the designer and the ex-

perimentalist to locate optimal working frequencies (4). The introduction of these global indicators is based upon

a preliminary description of the equations governing the system in terms of Lagrangian densities. Specifically, the

mechanical Lagrangian density features the parts of the system obeying to Helmoltz–Navier equation which describes

elastic waves in the frequency domain. On the other hand, the acoustic Lagrangian density represents the propagation

of acoustic pressure wave in the inviscid fluid, meaning that the corresponding governing equation is the Helmoltz

wave equation for the pressure. Finally, the electro-mechanical Lagrangian density describes elastic waves in the

piezoelectric element driven by the coupling to the dielectric behavior of the material in the presence of an imposed

potential difference.

Addressing the exact form of the Lagrangian densities is important in two regards. First, the weak formulation of

the governing equations for the finite element implementation stems directly from the individuation of the Lagrangian

densities. This is important in the development of numerical methods that can be systematically checked by means of

physical considerations. Second, the Hamiltonian density can be retrieved by splitting of the Lagrangian density in the

kinetic and potential energy densities and summing them. The Hamiltonian density is important for the quantification

of the system energy in all of the subsequent quantities, and it can be used to characterize the system both from the

mechanical and electrical point of views.

Table 1. List of symbols.

ρ Density c Speed of sound

ε Dielectric tensor P Piezoelectric coupling matrix

Σ Stiffness tensor

L Lagrangian density H Hamiltonian density

u Displacement p Pressure

φ Electric potential

L̂ Lagrangian Ĥ Hamiltonian

Ŵ Work P̂ Power

L Effective Lagrangian H Effective Hamiltonian

η Acoustofluidic yield α Acoustophoretic mean orientation

2. Theory

The free Lagrangian densities, i.e. with no boundary contributions, for a system constituted by an elastic solid, an

inviscid fluid, and a piezoelectric element driven at a given frequency in an oscillatory regime are

Lm(u,∇u) = ρω2u∗ · u − ∇u∗ : Σ : ∇u, (1)

La(p,∇p) =
∇p∗ · ∇p
ρω2

− p∗p
ρc2
, (2)

Lem(u,∇u, φ,∇φ) = ρω2u∗ · u − ∇u∗ : Σ : ∇u + ∇φ∗ · ε · ∇φ − 2∇φ∗ · P : ∇u . (3)

The meaning of the symbols appearing in these equations is given in table 1. We note that for the system we are

considering, the field variables, i.e. the displacement, the pressure and the electric potential, should be labeled to

address which subsystem of the device, they refer to. For the sake of clarity we omit this index to better illustrate

the general idea of the variational framework. Thus, the corresponding Euler–Lagrange equations for the system

of equations (1)–(3) that govern the behavior of the system in the oscillatory regime with angular frequency ω, can

be retrieved by varying the Lagrangian densities with respect to the field variables u, p, and φ. When we want to

implement the governing equations in a finite element software, such as Comsol Multiphysics, we need just to provide

the Lagrangian densities (1)–(3) and the boundary contributions to these. The latter are given by

L bnd
m (u,σbnd

m ) = u∗ · σbnd
m · n̂, (4)
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