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a b s t r a c t

The diverse applications of the Benford law attract investigators working in various fields of physics,
biology and sociology. At the same time, the groundings of the Benford law remain obscure. Our paper
demonstrates that the Benford law arises from the positional (place-value) notation accepted for
representing various sets of data. An alternative to Benford formulae to predict the distribution of digits
in statistical data is derived. Application of these formulae to the statistical analysis of infrared spectra of
polymers is presented. Violations of the Benford Law are discussed.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The Benford law is a phenomenological, contra-intuitive law
observed in many naturally occurring tables of numerical data;
also called the first-digit law, first digit phenomenon, or leading
digit phenomenon. It states that in listings, tables of statistics,
etc., the digit 1 tends to occur with a probability of 30%, much
greater than the expected value of 11.1% (i.e. one digit out of 9)
[1–2]. The discovery of Benford’s law goes back to 1881, when
the American astronomer Simon Newcomb noticed that in loga-
rithm tables (used at that time to perform calculations), the earlier
pages (which contained numbers that started with 1) were much
more worn and smudged than the later pages. Newcomb noted,
‘‘that the ten digits do not occur with equal frequency must be
evident to any making use of logarithmic tables, and noticing
how much faster first pages wear out than the last ones [1].” The
phenomenon was re-discovered by the physicist Frank Benford,
who tested it on data extracted from 20 different domains, as dif-
ferent as surface areas of rivers, physical constants, molecular
weights, etc. Since then, the law has been credited to Benford [2].
The Benford law is expressed by the following statement: the
occurrence of first significant digits in data sets follows a logarith-
mic distribution:

PðnÞ ¼ log10 1þ 1
n

� �
; n ¼ 1; 2; . . . ; 9 ð1Þ

where P(n) is the probability of a number having the first non-zero
digit n.

Since its formulation, Benford’s law has been applied for the
analysis of a broad variety of statistical data, including atomic
spectra [3], population dynamics [4], magnitude and depth of
earthquakes [5], genomic data [6–7], mantissa distributions of pul-
sars [8], and economic data [9–10]. While Benford’s law definitely
applies to many situations in the real world, a satisfactory explana-
tion has been given only recently through the works of Hill et al.
[11–13], who called the Benford distribution ‘‘the law of statistical
folklore”. Important intuitive physical insights in the grounding of
the Benford law, relating its origin to the scaling invariance of
physical laws, were reported by Pietronero et al. [14]. Engel et al.
demonstrated that the Benford law takes place approximatively
for exponentially distributed numbers [15]. Fewster supplied a
simple ‘‘geometrical” reasoning of the Benford law [16]. The break-
down of the Benford law was reported for certain sets of statistical
data [17–19].

It should be mentioned that the grounding and applicability of
the Benford law remain highly debatable [13]. In spite of this, the
Benford law was effectively exploited for detecting fraud in
accounting data [18]. Quantifying non-stationarity effects on orga-
nization of turbulent motion by Benford’s law was reported
recently [20]. Our paper supplies intuitive reasoning clarifying
the origin of the Benford law.
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New results

The origin of the Benford Law, and the positional (place-value)
notation

In practice, measured quantities or analyzed data are restricted
by a prescribed accuracy defined by a number of significant digits.
This means that mantissas of decimal numbers, which are simply
integers, are restricted from above by some integer, say, m + 1.

Taking in mind the above mentioned, consider a set
f1; 2; . . . ; mg. When m ! 1, this set coincides with the full set
of integers. Let us elucidate how the frequency fn(m) of numbers
beginning with the digit 1 (n = 1) depends on m. In the first 6 lines
of Table 1, the examples for the values ofm are presented for which
f1(m) successively reaches minimum and maximum. It is seen that
the above frequency changes quasi-periodically with increasing m,
decreasing and increasing, and reaches its minima and maxima in
turn for selected values of m (see Fig. 1). Successive minimums
fmin,n(k) and maximums fmax,n(k) are enumerated by k = 1, 2,. . ..

As another example, in the following lines of Table 1, the
minimal and maximal frequencies fmin,5(k), fmax,5(k) and fmin,9(k),
fmax,9(k) of integers beginning with the digits 5 and 9 are given. It
is seen that the maximal and minimal frequencies decrease for
the sequence n = 1, 5, 9: the number of integers beginning with
these digits remains the same, but the sizes of the corresponding
intervals [1,m] grow (compare m in the third column for different
n and the same k).

As is seen from Table 1, the successive minima and maxima,
enumerated by k, may be written as:

fmin;nðkÞ ¼
1 � 10k�1 þ 1 � 10k�2 þ . . .þ 1

ðn� 1Þ � 10k þ 9 � 10k�1 þ 9 � 10k�2 þ . . .þ 9
; ð2Þ

fmax;nðkÞ ¼
1 � 10k þ 1 � 10k�1 þ . . .þ 1

n � 10k þ 9 � 10k�1 þ 9 � 10k�2 þ . . .þ 9
ð3Þ

for k ¼ 1; 2; 3 . . .. All the sums in Eqs. (2) and (3) are calculated as
sums of the geometric sequence

fmin;nðkÞ ¼
10k � 1

9ðn � 10k � 1Þ
; ð4Þ

fmax;nðkÞ ¼
10kþ1 � 1

9 ðnþ 1Þ � 10k � 1
h i : ð5Þ

Letting k go to infinity (which also means letting corresponding
values of m in Table 1 to go to infinity), results in

fmin;n ¼ lim
k!1

fmin;nðkÞ ¼
1
9n

; ð6Þ

fmax;n ¼ lim
k!1

fmax;nðkÞ ¼
10

9ðnþ 1Þ : ð7Þ

The probability of the occasional choosing of a particular num-
ber beginning with the digit n from the whole set of integers may
be estimated as a normalized arithmetic mean or a normalized
geometric mean of the minimal (6) and maximal (7) frequencies:

ParithðnÞ ¼ ½fmin;n þ fmax;n�
� X9

i¼1

ðfmin;i þ fmax;iÞ
 !

PgeomðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fmin;nfmax;n

q � X9
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fmin;i � fmax;i

q !
:

The final result is

ParithðnÞ ¼
10
nþ1 þ 1

nP9
i¼1

10
iþ1 þ 1

i

� � ð8Þ

PgeomðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp P9

i¼11=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðiþ 1Þp : ð9Þ

The results of Eqs. (8) and (9) are compared with the Benford
formula (1) in Table 2 and Fig. 2. As is seen, the normalized geo-
metric mean shows very good agreement, even though the math-
ematical forms of (1) and (9) are different.

The results (6)–(9) allow an obvious generalization for the case
of an arbitrary base N of the positional digit system:

f Nmin;n ¼ 1
ðN � 1Þn ; f Nmax;n ¼ N

ðN � 1Þðnþ 1Þ

PN
arithðnÞ ¼

N
nþ 1

þ 1
n

� ��XN�1

i¼1

N
iþ 1

þ 1
i

� �
ð10Þ

PN
geomðnÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp PN�1

i¼1 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðiþ 1Þp ð11Þ

where 1 6 n 6 N � 1. In particular, in the binary system (N = 2), all
the right-hand sides of the four last equations turn to 1 for n = 1 (all
the numbers presented in the binary system begin with 1).

It is well known that in many cases the Benford distribution
does not hold. This may happen, e.g., under some restriction on
the set of admissible numbers. For example, if the inequality
1 6 l < 1000 is imposed on the random sample of integers l (or
mantissas of real numbers), the probability Pð1Þ will be close to
1/9 (see Table 1), and not to the value predicted by the Benford for-
mula or by Eqs. (8) and (9), which is about 3 times larger. More
generally, the necessary condition is that the set f1; 2; . . . ; mg to
which a random sample of integers belong should contain the
same numbers of minimal (4) and maximal (5) frequencies. In
any case, if some restrictions take place, the following inequalities
should be fulfilled:

fmin;n 6 PðnÞ 6 fmax;n

or

1
9n

6 PðnÞ 6 10
9ðnþ 1Þ ð12Þ

in the decimal system. In digit systems with a lower base N, the
appropriate inequalities are stronger:

Table 1
Frequencies of integers beginning with different figures.

First digit, n,
of the
number

m f1; 2; . . . ; mg Amount, p,
of
numbers

k Minimal and
maximal
frequencies, p/m

1 9 1, 2,. . ., 9 1 1 1/9
19 1, 2,. . ., 19 11 11/19
99 1, 2,. . ., 99 11 2 11/99 = 1/9
199 1, 2,. . ., 199 111 111/199
999 1, 2,. . ., 999 111 3 111/999 = 1/9
1999 1, 2,. . ., 1999 1111 1111/1999

5 49 1, 2,. . ., 49 1 1 1/49
59 1, 2,. . ., 59 11 11/59
499 1, 2,. . ., 499 11 2 11/499
599 1, 2,. . ., 599 111 111/599
4999 1, 2,. . ., 4999 111 3 111/4999
5999 1, 2,. . ., 5999 1111 1111/5999

9 89 1, 2,. . ., 89 1 1 1/89
99 1, 2,. . ., 99 11 11/99
899 1, 2,. . ., 899 11 2 11/899
999 1, 2,. . ., 999 111 111/999
8999 1, 2,. . ., 8999 111 3 111/8999
9999 1, 2,. . ., 9999 1111 1111/9999
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