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a b s t r a c t

In this paper, an analytical approximate technique based on harmonic balance method (HBM) is pre-
sented to obtain the approximate frequencies and the corresponding periodic solutions of a conservative
oscillator having inertia and static non-linearity. The results of the present paper are valid for small and
large amplitudes of oscillation. In previous articles, the first and second approximations were determined
for the same oscillator; but the results were not close to the exact result. On the contrary, the new results
of this paper are very close to the exact result.
� 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In both science and engineering, there exist many non-linear
problems in which parameters are not small. To overcome these
shortcomings, many analytical techniques such as variational iter-
ative method [1,2], homotopy perturbation method [3–5], varia-
tional approach [6] are used to solve strongly nonlinear
equations. Recently, the homotopy perturbation method (HPM)
has been modified named as optimal homotopy perturbation
method (OHPM) [7–10]. The harmonic balance method (HBM)
[11–16] is a widely used technique for solving strongly nonlinear
systems. Furthermore, some authors [17,18,5,19–23] have investi-
gated a number of nonlinear oscillator problems using various
methods. Moreover, many numerical methods [24–33] have been
studied to solve differential equations. Nonlinear of planar, large-
amplitude free vibrations of a slender, inextensible cantilever
beam carrying a lumped mass with rotary inertia at an intermedi-
ate position along its span is one of the problems that does not con-
tain small parameter. These problems are not amenable to exact
treatment for their complexity and thus the approximate tech-
niques must be needed to solve such problems [34,35,10]. Hamdan
and Dado [34] used the harmonic balance method to solve such
problems, but they obtained only the approximate periods of oscil-
lation. Recently, some authors [35,10,36,37] have investigated the
same oscillator using different methods. In the previous article,
Herisanu and Marinca [10] used the optimal homotopy asymptotic
method (OHAM) for solving such nonlinear oscillator, but the solu-
tion procedure is laborious; moreover, the solution contains up to
seventh harmonic terms. On the other hand, in another article [37],

the second-order approximation has determined such a nonlinear
oscillator, but the solution procedure is also laborious; further-
more, the results are not significantly better as compared with
numerical result. The main aim of this article is to provide a har-
monic balance technique which contains only fifth harmonic terms
to determine the higher approximate solutions of a non-linear con-
servative system with inertia and static non-linearity.

The formulation as well as the determination of the present
paper is systematic and quite easy. Furthermore, the solution con-
tains only a few harmonic terms (containing up to three to five)
and these terms make the solution rapidly congregate. The
appeared algebraic equations in this paper are analytically solved.
Moreover, the results are better than other existing results
[10,37,38].

Formulation and solution method

Let us consider a nonlinear differential equation

€xþ x ¼ �f ðx; _xÞ; xð0Þ ¼ a; _xð0Þ ¼ 0 ð1Þ
where f ðx; _xÞ is a nonlinear function such that f ð�x;� _xÞ ¼ �f ðx; _xÞ.

A periodic solution of Eq. (1) is obtained in the form

xðtÞ ¼ aðq cosuþ u cos 3uþ v cos 5uþw cos 7uþ � � �Þ ð2Þ
where a;q are constants, u ¼ xt andx ¼ 2p

T are a frequency of non-
linear oscillation, here T is a period. If q ¼ 1� u� v � � � � and the
initial phase u0 ¼ 0, solution Eq. (2) readily satisfies the initial con-
ditions xð0Þ ¼ a; _xð0Þ ¼ 0.

Substituting Eq. (2) into Eq. (1) and expanding f ðx; _xÞ in a Four-
ier series, it turns to an algebraic identity
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a½qð1� _u2Þ cosuþ uð1� 9 _u2Þ cos 3u � � ��
¼ �½F1ða;u; . . .Þ cosuþ F3ða; u; . . .Þ cos 3u � � ��: ð3Þ
By comparing the coefficients of equal harmonics of Eq. (3), the

following nonlinear algebraic equations are found

qð1� _u2Þ ¼ �F1; uð1� 9 _u2Þ ¼ �F3; vð1� 25 _u2Þ ¼ �F5; . . .

ð4Þ
With the help of first equation, _u is eliminated from all the rest

of Eq. (4). Thus Eq. (4) takes the following form

q _u2 ¼ qþ F1; 8uq ¼ qF3 � 9uF1; 24vq ¼ qF5 � 25vF1; . . .

ð5Þ
Substituting q ¼ 1� u� v � � � �, and after simplifying Eq. (5)

takes the following nonlinear algebraic equations as

G1ða;u; v; � � �Þ ¼ 0; G2ða; u;v ; � � �Þ ¼ 0; . . . ð6Þ
Recently, these types of algebraic equations have been solved

by the power series method introducing a small parameter (see
[15,16] for details). However, for the large amplitude of oscillation,
such power series does not converge. In that case, Eq. (6) is solved
by a numerical technique. Fortunately, for large-amplitude oscilla-
tion of a conservative system with inertia and static non-linearity
these equations are truncated to a quadratic form which provides
desired results.

Examples

Example 1

Consider the nonlinear oscillator [10,36,37]

€xþ xþ ax2€xþ ax _x2 þ bx3 ¼ 0; ð7Þ
subject to the initial conditions

xð0Þ ¼ a; _xð0Þ ¼ 0: ð8Þ
The second-order approximate solution is chosen in the follow-

ing form

x ¼ aðq cosuþ u cos 3uÞ ð9Þ
where q ¼ 1� u and u ¼ xt.

Substituting Eq. (9) into Eq. (7) and expanding in a Fourier ser-
ies and equating the coefficient of cosu and cos3u, we obtained
the following equations as

1� uþ 3a2b
4

� 3
2
a2ubþ 9

4
a2u2b� 3

2
a2u3b�x2 þ ux2 � 1

2
a2ax2

� 7
2
a2u2ax2 þ 4a2u3ax2 ¼ 0; ð10Þ

uþ a2b
4

þ 3
4
a2ub� 9

4
a2u2bþ 2a2u3b� 9ux2 � 1

2
a2ax2 � 7

2
a2uax2

þ 17
2

a2u2ax2 � 9a2u3ax2 ¼ 0; ð11Þ

Now, by eliminating x2 from Eqs. (10) and (11) and neglecting
the higher order of u more than u2, we obtain the following equa-
tion as

ð2a2a� a2bþ a4abþ ð32þ 12a2aþ 24a2bþ 7a4abÞu
þ ð�36a2a� 18a2b� 34a4abÞu2 ¼ 0 ð12Þ

Solving Eq. (12), we obtain the unknown coefficient, u as

uðaÞ ¼ 32þ 12a2aþ 24a2bþ 7a4abþ 7a4abþ ffiffiffi

k
p

2ð36a2aþ 18a2bþ 34a4abÞ ð13Þ

where

k ¼ 1024þ 768a2aþ 432a4a2 þ 1536a2bþ 1024a4abþ 584a6a2b

þ 504a4b2 þ 272a6ab2 þ 185a8a2b2

and the second approximate frequency, x2 is obtained from (10) as

x2
2 ¼ x2 ¼ 4þ 3a2ð1� uþ 2u2Þb

2ð2þ a2ð1þ uþ 8u2ÞaÞ ð14Þ

The third-order approximation is of the form:

x ¼ aðq cosuþ u cos 3uþ v cos 5uÞ ð15Þ
where q ¼ 1� u� v and u ¼ xt.

Substituting Eq. (15) into Eq. (7) and expanding in a Fourier ser-
ies and equating the coefficient of cosu, cos 3u and cos 5u, we
obtained the following equations as

1� u� v þ 3a2b
4

� 3
2
a2ubþ 9

4
a2u2b� 9

4
a2vbþ 9

2
a2uvbþ 15

4
a2v2b

�x2 þ ux2 þ vx2 � 1
2
a2ax2 � 7

2
a2u2ax2

þ 3
2
a2vax2 � 9a2uvax2 � 29

2
a2v2ax2 þ � � � ¼ 0; ð16Þ

uþ a2b
4

þ 3
4
a2ub� 9

4
a2u2b� 3

2
a2uvb� 3

4
a2v2b� 9ux2 � 1

2
a2ax2

� 7
2
a2uax2 þ 17

2
a2u2ax2 � 3a2vax2 þ 5a2uvax2

þ 15
2

a2v2ax2 þ � � � ¼ 0; ð17Þ

v þ 3
4
a2ub� 3

4
a2u2bþ 3

2
a2vb� 9

2
a2uvb� 3a2v2b� 25vx2

� 9
2
a2uax2 þ 7

2
a2u2ax2 � 13a2vax2 þ 35a2uvax2

þ 26a2v2ax2 þ � � � ¼ 0: ð18Þ
Now eliminatingx2 from Eqs. (16), (17) and (18), we obtain the

following equations as

ð2a2a� a2bþ a4abþ ð32þ 12a2aþ 24a2bþ 7a4abÞu
� ð36a2aþ 18a2bþ 34a4abÞu2 þ ð12a2aþ 7a4abÞv
� ð16a2aþ 48a2bþ 43a4abÞuv ¼ 0 ð19Þ

ð18a2a� 3a2bþ 12a4abÞuþ ð96þ 50a2aþ 69a2bþ 36a4abÞv ¼ 0

ð20Þ
Solving Eqs. (19) and (20), we get the value of u and v .

Solving Eq. (16), we obtained the third-order approximate fre-
quency x3 by truncated higher order (more than second order of
u and first order of v) as:

x2
3 ¼ x2 ¼ 4þ 3a2b� 3a2ubþ 6a2u2b� 6a2vbþ 9a2uvb

2ð2þ a2aþ a2uaþ 8a2u2a� 2a2vaþ 17a2uvaÞ ;

ð21Þ
where u and v are given in Eqs. (19), (20).

Therefore, the third-order approximate solution of Eq. (7)
becomes

x ¼ aðð1� u� vÞ cosuþ u cos 3uþ v cos 5uÞ; ð22Þ
where u and v and x are found from Eqs. (19)–(21).

Example 2

Consider the nonlinear equation [38] in the following form

€xþ xþ ax4€xþ 2a _x2x3 þ bx5 ¼ 0; ð23Þ
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