
Fatigue life prediction using multiaxial energy calculations with the
mean stress effect to predict failure of linear and nonlinear elastic solids

Marko Nagode, Domen Šeruga ⇑
University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
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a b s t r a c t

An approach is presented that enables the calculation of elastic strain energy in linear and nonlinear elas-
tic solids during arbitrary thermomechanical load cycles. The approach uses the simple fact that the vari-
ation of both strain and complementary energies always forms a rectangular shape in stress–strain space,
hence integration is no longer required to calculate the energy. Furthermore, the approach considers the
mean stress effect so that predictions of fatigue damage are more realistically representative of real-life
experimental observations. By doing so, a parameter has been proposed to adjust the mean stress effect.
This parameter a is based on the well-known Smith–Watson–Topper energy criterion, but allows consid-
eration of other arbitrary mean stress effects, e.g. the Bergmann type criterion.
The approach has then been incorporated into a numerical method which can be applied to uniaxial

and multiaxial, proportional and non-proportional loadings to predict fatigue damage. The end result
of the method is the cyclic evolution of accumulated damage. Numerical examples show how the method
presented in this paper could be applied to a nonlinear elastic material.
� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Mechanical components are usually subjected to variable loads
during operation. These cause stresses, strains and temperature
rises in the component as a reaction to such loading. Depending
on the size of the load and the exposure (operating) time, fluctuat-
ing stress–strain fields in a component can eventually lead to a
crack where the damage is greatest – the critical location, which
will continue to grow under continued loading and eventually
result in the failure of the component [1–5]. Although various
mechanisms lead to the deterioration of mechanical products once
they are put into operation, fatigue is still one of the main sources
of failure for products that operate over longer amounts of time,
e.g. months, years or hundreds of thousands of load cycles [6,7].
Fatigue mechanisms prosper due to the changeable load and envi-
ronmental conditions and can ultimately lead to a complete stop-
page of functionality of these products [7–11].

Predicting fatigue damage of a product is therefore not only
important directly prior to manufacture but is an integral step in
the early stages of product development. However, the identifica-
tion of critical locations and the quality of the prediction, e.g. the
predicted number of cycles to failure, will only be as good as the
following: level of complexity of the temperature dependent

stress–strain calculation; reproducibility of the damage accumula-
tion modelling; level of detail included in the fatigue damage pre-
diction; and accuracy of the input data of the material properties
[9,11]. The final experimental verification of the prediction is
always valuable before the component enters the manufacturing
stage but prior to this stage, computer aided predictions are neces-
sary as a means of reducing financial outlay and shortening devel-
opment times [6,12].

The majority of fatigue damage predictions are still based on
uniaxial approaches or transformations of multiaxial stress–strain
states into equivalent (uniaxial) cases either assuming a failure
theory (e.g. signed von Mises stress) or applying the critical plane
approach [5,12–17]. They usually give satisfactory predictions,
especially if they incorporate various influences on the fatigue
damage prediction such as e.g. the mean stress correction [5,17–
21]. However, under more complex conditions some of the com-
monly used techniques may no longer be capable of producing
accurate predictions [16,17,19,21]. Alternatively, the invariance
of the energy (which is independent of the coordinate system of
observation) and its dissipation during cyclic loading have proven
to be a suitable tool for predicting fatigue damage regardless of the
type of loading (mechanical, thermal, uniaxial, multiaxial propor-
tional or non-proportional) [13,18,22,23]. Therefore energy-based
models for fatigue damage predictions have been a good counter-
weight to equivalent prediction models. However, according to the
available literature, there have been attempts to include the mean
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stress correction in the energy-based methods e.g. [18,22], but to
date no established criterion has been accepted as e.g. are the Sm
ith–Watson–Topper (SWT) or Bergmann mean stress criteria for
the uniaxial stress–strain states [5,16,18,24,25].

Here we present how energy-based fatigue damage predictions
can be applied to a given variable multiaxial thermomechanical
loading and nonlinear elastic solid, and hence show how they
could be applied to materials such as metals, rubbers, polymer net-
works, liquid crystal elastomers and new biological materials
under large strains. Furthermore, the approach is extended to con-
sider the mean energy influence of the load cycles which can
exactly reproduce the well-known uniaxial SWT correction [24–
26] or can be adapted for another experimentally observed influ-
ence on the mean stress level, i.e. a Bergmann type correction
[25] by introducing an additional parameter a. The approach pre-
sented here is incorporated into a robust method based on Prandtl
operators [6,10,12,23] that estimates the accumulated thermome-
chanical fatigue damage at any time instant during the load history
by calculating the cyclic fatigue damage evolution.

Energy calculation

The material response under cyclic loading is assumed to be
temperature dependent and nonlinear elastic. This means that it

is independent of the load history (path independent) and that
the stress tensor rij and strain tensor ekl form a nonlinear constitu-
tive law

rijðtsÞ ¼ rijðDijklðTsÞ; eklðtsÞÞ ð1Þ
which depends on a temperature dependent stiffness tensor Dijkl

and temperature Ts ¼ TðtsÞ for every time instant ts; s ¼ 1; . . . ;ns. It
will be assumed here that both stress and strain tensors rij and
ekl for every time instant have been determined in advance accord-
ing to a nonlinear elastic model as the material response modelling
is not the main focus of the paper. As the approach is general, the
stress and strain tensor can be considered as multiaxial and non-
proportional. In the equations below, the time and temperature
dependence will be omitted for simplicity though they are consid-
ered throughout the calculation. Additionally, all the quantities in

this paper apply only to elastic materials, e.g., ekl ¼ eelkl;Ue ¼ Uel
e ;

hence ‘‘el” superscripts will be omitted for clarity.
First, strain energy and its complementary energy must be

defined. These phenomena are crucial for the calculations to fol-
low. Eqs. 1–13 refer to [27] where the reader can find further
details on the strain and complementary energies.

For a given stress state rij, an infinitesimal amount of strain
energy per unit volume dW (referred to as strain energy hereafter)
during a load cycle can be calculated as

Nomenclature

a mean stress parameter
d Prandtl density
D damage operator
Dea;p elastic principal strain range
Deae;p equivalent elastic principal strain range
DUae;p total equivalent elastic principal energy range
ecyclea uniaxial experimental strain amplitude
ea;p elastic principal strain amplitude
eij; ekl elastic strain
ep; eq elastic principal strain
eresj;p residuum principal strain
ea;p elastic principal strain amplitude
e�ae;p equivalent linear elastic principal strain amplitude
eae;p equivalent nonlinear elastic principal strain amplitude
emax;p maximum absolute principal strain
eo;p origin of elastic principal strain
rcycle
a uniaxial experimental stress amplitude

ra;p principal stress amplitude
r�
ae;p equivalent linear principal stress amplitude

rae;p equivalent nonlinear principal stress amplitude
rij stress
rcycle
m uniaxial experimental mean stress

rm;p principal mean stress
rmax;p maximum principal stress
ro;p origin of principal stress
rp principal stress
C elastic complementary energy per unit volume
Ca elastic complementary energy amplitude
Ca;p elastic principal complementary energy amplitude
Cae;p equivalent elastic principal complementary energy

amplitude
Cm elastic mean complementary energy
Cm;p elastic principal mean complementary energy
d;df equivalent cycle damage
D;Df accumulated fatigue damage
Da damage due to total elastic energy amplitude
Dae damage due to total equivalent elastic energy amplitude
Dm damage due to total elastic mean energy

Dijkl nonlinear elastic stiffness
Dppqq linear elastic stiffness
i; j; k; l second and fourth order tensor indices
i stress history index (only in Appendix B)
j index for number of reversal points in residuum (only in

Appendix B)
j stress index of the spring-slider model
k temperature index of the spring-slider model
ns number of time increments
nu number of fictive yield energies
nT number of temperature divisions
p index of principal components
Re strain ratio
Rr stress ratio
s time index
S logical operator (only in Appendix B)
t time
T temperature
u yield surface
Ua total elastic energy amplitude
Ua;p total elastic principal energy amplitude
Uae total equivalent elastic energy amplitude
Ucycle

ae total experimental elastic energy amplitude
Uae;p total equivalent elastic principal energy amplitude
Udj back stress of the spring-slider model
Ue;p total equivalent elastic principal energy
Ue total equivalent elastic energy
Um total elastic mean energy
Um;p total elastic principal mean energy
Uo;p origin of total equivalent elastic principal energy
W elastic strain energy per unit volume
Wa elastic strain energy amplitude
Wa;p elastic principal strain energy amplitude
Wae equivalent elastic strain energy amplitude
Wae;p equivalent elastic principal strain energy amplitude
Wm elastic mean strain energy
Wm;p elastic principal mean strain energy
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