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We apply a time evolution approach to the statistical mechanics of one and two dimensional systems to

study the evolution toward steady state. We have used the Feynman definition of an inverse operator to

show that in one and two dimensions, there is an approach to steady state of hydrodynamic variables

such as field velocities and pressure. Illustrative examples in 1D are shown to display steady state

variables.
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Introduction We refer the reader to [2-5] for the definitions and conventions
used in the above equation.
We drop S, but we are first obliged to show that normalization

is preserved. To quickly show this we integrate over momentum

[ aorir.p.)= [ ap (r-2p. )

In the earliest version of an exact solution to the 3D Navier-
Stokes equation [1], it was observed that the hydrodynamic vari-
ables like field velocities and pressure approach steady state. It
would then be desirable to confirm this analytically. Starting from
our 3D solutions, we specialize to 1D and 2D and show that analyt-
ically, there is indeed this ergodic behavior. In arriving at this

result, we may have developed techniques that could be used to
generalize the proof for 3D.

Our results will be derived from the following time evolution
equation whose derivation is given in [5]:
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The last integral of Eq. (3) is zero and
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Normalization is indeed preserved. We may continue using our
finite number of terms in Eq (1).
Suppose
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f3(r,1.p,0) = F(Nf ()
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then we may write for uniform initial data
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Differentiating Eq. (4) with respect to time,
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Now consider the formal operator equation
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Next we use the Feynman definition of the inverse operator

L= ase (9)

so that
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Eq. (10) is still in 3D, and the three spatial integrals are equal.
We will use the pair-potential
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Approach to a steady state in one and two dimensions

Using Eqgs. (6) and (9)
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All operators above act on right hand side expressions.
We have to evaluate our Feynman integral
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still using the 3D pair-potential.

We evaluate the space integral in a box of dimensions x from
-W to W, y from -W to W, and z from —-Z to Z, then put
y=x=0to get
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which approaches zero as W — 0. In one dimension, there is a rig-
orous approach to steady state.

The above procedure may be repeated for a box of dimension 2X
by 2Y by 2Z, then evaluating the limit as Z — 0, resulting in zero F.
In 2D, there also exists an approach to steady state.

We conclude that in 1D and 2D, from Eq (14), ”f”’x =0 as
t — oo, there is an approach to a steady state for any initial
momentum distribution. The final momentum distribution has a
memory of the initial data.

For 3D, new techniques will be needed to show an approach to
steady state, an open problem to be solved in a succeeding paper.

The rest of this paper will illustrate the consequences of the
approach to steady state in 1D.

F=

Hydrodynamic variables

We review our most general result from [4] for the time evolu-
tion of hydrodynamic variables:
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