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a b s t r a c t

In this paper, we discuss the single sweep alternating group explicit (SWAGE) and Newton-SWAGE iter-
ation methods to solve the non-linear ordinary differential equation y00 = f(x,y,y0) subject to given natural
boundary conditions, along with a third order cubic spline numerical method on a geometric mesh. It is
applicable to both singular and non-singular problems. The convergence of the SWAGE iteration method
is discussed in detail. We compared the results of proposed SWAGE iteration method with the results of
corresponding two parameter alternating group explicit (TAGE) iteration methods to demonstrate com-
putationally the efficiency of the proposed method.

� 2013 The Authors. Published by Elsevier B.V.

1. Introduction

The Burgers’ equation was named after J.M. Burgers. The viscid
Burgers’ equation is a very important fluid dynamic problem. It is a
nonlinear second order parabolic partial differential equation. Bur-
gers’ equation is a simplified form of the one-space dimensional
Navier–Stokes equation. It possesses a fundamental quadratic
non-linearity and is considered as an appropriate model for study-
ing turbulence. It occurs in various areas of applied mathematics
such as boundary layer formation, modeling of gas dynamics, traf-
fic flow and shock waves, etc. The study of this equation has been
considered important both for the conceptual understanding and
for testing various numerical methods.

Many closed form analytical solutions have been obtained for
Burgers’ equation for various initial and boundary conditions by
many researchers in the past. But these exact solutions are not
effective for small values of viscosity. So, researchers are working
on developing the numerical methods to efficiently and accurately
solve the Burgers’ equation with small viscosity. Various numerical
methods based on finite difference approximations, finite element

and spectral methods have been developed for the solution of the
Burgers’ equation.

In this paper, we discuss a new single sweep alternating group
explicit (SWAGE) algorithm based on cubic spline approximation
on a variable mesh for the numerical solution of nonlinear viscous
Burgers’ equation.

In the recent past, many authors (see [2–6,10–15]) have suggested
various numerical methods based on cubic spline approximations for
the solution of linear singular two point boundary value problems. In
1969 Fyfe [7] discussed the use of cubic spline for the solution of two
point boundary value problems. Later, Albasiny and Hoskins [5,6] and
Jain and Aziz [9] discussed both second- and fourth-order cubic
spline methods using uniform mesh for the numerical solution of
the non-linear two-point boundary value problems. In 1988, Chawla
et al [8] developed fourth order cubic spline methods for linear singu-
lar boundary value problems. In 2003 Evans and Mohanty [18] devel-
oped a fourth-order accurate cubic spline alternating group explicit
method for non-linear singular two-point boundary value problems.
Recently Mohanty et al [22] have developed a third-order non-uni-
form mesh cubic spline method for the solution of non-linear singular
two-point boundary value problems. On applying these higher order
methods to linear and non-linear differential equations, we obtain
large system of linear and non-linear equations respectively. In
1985, Evans [16,21] developed group explicit methods for solving
large linear systems, which are suitable for use on parallel computers.
Evans and Mohanty [18] have discussed Alternating group explicit
method to solve nonlinear singular two point boundary value prob-
lems. Evans and Sukon [17], Mohanty et al [19] have further dis-
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cussed the two parameter AGE method. Evans and Mohanty [20]
have developed a Coupled Alternating group explicit method for solv-
ing non-linear singular two point boundary value problems. Re-
cently, Mohanty et al [23] have discussed the coupled reduced
alternating group explicit (CRAGE) algorithm and sixth order off-step
discretization for the solution of two point nonlinear boundary value
problems.

In Section 2, we give the description of the cubic spline method
and discuss its applications to singular linear and non-linear two
point boundary value problems. In Section 3, we discuss the single
sweep alternating group explicit (SWAGE) and Newton-SWAGE
iterative method for solving the difference equations obtained on
applying the cubic spline method to linear and nonlinear problems
respectively. Further, we discuss the convergence of the SWAGE
method in detail. In Section 4, we compare the performance of
the proposed SWAGE and Newton-SWAGE iterative methods with
the corresponding TAGE and Newton-TAGE iterative methods.
Concluding remarks are given in Section 5.

2. Cubic spline approximation and application

Consider the general non-linear ordinary differential equation

y00 ¼ f ðx; y; y0Þ; a < x < b ð1Þ

subject to essential boundary conditions

yðaÞ ¼ A; yðbÞ ¼ B; ð2Þ

where �1 < a < b <1, A, B are finite constants.
We assume that for x 2 [a,b], �1 < y, z <1

(i) f(x,y,z) is continuous,
(ii) @f/@y and @f/@z exist and are continuous,

(iii) @f/@y > 0 and j@f/@zj < W for some positive constant W.

These conditions ensure that the boundary value problem (1)
and (2) possesses a unique solution (see Keller [1]).

To obtain a cubic spline solution of the boundary value problem
(1) and (2), we discretize the interval [0,1]. Consider the solution
interval [0,1] with a non-uniform mesh such that 0 = x0 < x1 <
� � �< xN < xN+1 = 1. Let hk = xk � xk�1, k = 1(1)N + 1 be the mesh size
and rk = hk+1/hk > 0, k = 1(1)N be the mesh ratio. Grid points are gi-
ven by xi ¼ x0 þ

Pi
k¼1hk; i ¼ 1ð1ÞN þ 1. Let Yk = y(xk) be the exact

solution of y at the grid point xk and is approximated by yk.
At each internal mesh point xk, we denote:

Mk ¼ y00ðxkÞ ¼ f ðxk; yðxkÞ; y0ðxkÞÞ; k ¼ 0ð1ÞN þ 1:

Given the values y0,y1, . . . ,yN+1 of the function y(x) at the mesh
points x0,x1, . . . ,xN+1 and the values of the second derivatives of y
at the end points y000 and y00Nþ1, there exists a unique interpolating
cubic spline function S(x) with the following properties:

(i) S(x) coincides with a polynomial of degree three on each
[xk�1,xk], k = 1(1)N + 1

(ii) S(x) 2 C2[0,1] and
(iii) S(xk) = yk, k = 0(1)N + 1

The interpolating cubic spline polynomial may be written as:

SðxÞ ¼ ðxk � xÞ3

6hk
Mk�1 þ

ðx� xk�1Þ3

6hk
Mk þ yk�1 �

h2
k

6
Mk�1

 !
ðxk � xÞ

hk

þ yk �
h2

k

6
Mk

 !
ðx� xk�1Þ

hk
; xk�1 6 x6 xk; k¼ 1ð1ÞNþ1 ð3Þ

At each grid point xk, we denote

Pk ¼ r2
k þ rk � 1;

Q k ¼ ðrk þ 1Þ r2
k þ 3rk þ 1

� �
;

Rk ¼ rk 1þ rk � r2
k

� �
;

Sk ¼ rkð1þ rkÞ

Let, Gk ¼ @f
@Y 0k

etc.
At each grid point xk, the differential equation (1) may be writ-

ten as

Y 00k ¼ f xk;Yk;Y
0
k

� �
� fk

Using Taylor series expansion, we first obtain

Ykþ1 � ð1þ rkÞYk þ rkYk�1 ¼
h2

k

12
½Pkfkþ1 þ Q kfk þ Rkfk�1� þ Tk;

k ¼ 1ð1ÞN

where Tk ¼ O h5
k

� �
.

We consider the following approximations:
Let,

�mk ¼ Y 0k ¼ Ykþ1 � 1� r2
k

� �
Yk � r2

kYk�1
� �

=ðhkrkðrk þ 1ÞÞ; ð5:1Þ

�mkþ1 ¼ Y 0kþ1 ¼
ð1þ 2rkÞYkþ1 � ð1þ rkÞ2Yk þ r2

k Yk�1

hkSk
ð5:2Þ

�mk�1 ¼ Y 0k�1 ¼
�Ykþ1 þ ð1þ rkÞ2Yk � rkð2þ rkÞYk�1

hkSk
ð5:3Þ

�f k ¼ f ðxk;Yk; �mkÞ; ð5:4Þ
�f k�1 ¼ f ðxk�1;Yk�1; �mk�1Þ; ð5:5Þ

m̂k ¼ bY 0k ¼ �mk �
rkhk

6ð1þ rkÞ
ð�f kþ1 � �f k�1Þ; ð5:6Þ

bY 0kþ1 ¼
Ykþ1 � Yk

rkhk
þ rkhk

6
ð�f k þ 2�f kþ1Þ; ð5:7Þ

bY 0kþ1 ¼
Yk � Yk�1

hk
� hk

6
ð�f k þ 2�f k�1Þ; ð5:8Þ

f̂ k�1 ¼ f xk�1;Yk�1; bY 0k�1

� �
; ð5:9Þ

f̂ k ¼ f xk;Yk; bY 0k� �
; ð5:10Þ

Then the cubic spline method with order of accuracy three for
the differential Eq. (1) may be written as:

Ykþ1 � ð1þ rkÞYk þ rkYk�1 ¼
h2

k

12
½Pkf̂ kþ1 þ Q kf̂ k þ Rkf̂ k�1� þ bT k;

k ¼ 1ð1ÞN ð6Þ

where bT k ¼ O h5
k

� �
(See Mohanty et al [22]) with y0 =Y0 = A and

yN+1 = YN+1 = B. If the differential equation (1) is linear we apply
the SWAGE iterative method to obtain the solution, and if it is
non-linear, we use the Newton-SWAGE iterative method.

Now, we consider the application of the cubic spline method (6)
to the linear singular equation

y00 ¼ DðxÞy0 þ EðxÞyþ f ðxÞ; 0 < x < 1 ð7Þ

and non-linear singular equation

vy00 ¼ BðxÞy0 þ yy0 þ CðxÞyþ gðxÞ; 0 < x < 1 ð8Þ

where v ¼ R�1
e > 0 is a constant and D(x) = �a/x and E(x) = a/x2,

BðxÞ ¼ �av=x and EðxÞ ¼ av=x2:

For a = 1 and 2, the linear singular Eq. (7) becomes cylindrical and
spherical problems, respectively, and for a = 0, 1 and 2, the non-lin-
ear singular problem (8) represents steady-state Burger’s equation
in Cartesian, cylindrical and spherical coordinates respectively.

Now applying the difference formula (6) to the singular Eq. (7)
and neglecting the local truncation error, we obtain
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