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H I G H L I G H T S

c Detail differences in electron/positron transport in water in gas and liquid states.
c Emphasizes the importance of swarms as a test of accuracy/completeness of cross-sections.
c Emphasizes the importance of swarms for benchmarking Monte-Carlo simulations.
c Demonstrates the sensitivity of low-energy positron thermalization to cross-sections.
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a b s t r a c t

We present a study of electron and positron transport in water in both the gaseous and liquid states using

a Boltzmann equation analysis and a Monte-Carlo simulation technique. We assess the importance of

coherent scattering processes when considering transport of electrons/positrons in dense gases and

liquids. We highlight the importance of electron and positron swarm studies and experiments as a test of

the accuracy and completeness of cross-sections, as well as a technique for benchmarking Monte-Carlo

simulations. The thermalization of low-energy positrons (o150 eV) in water is discussed and the

sensitivity of the profiles to the form of the cross-sections in this energy region, and assumptions in the

microscopic processes, is considered.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The study of electron and positron transport in biological
matter is a key area of research in a variety of medical fields.
Positrons, the antiparticle of the electron, are now a routinely used
tool in imaging technologies such as positron emission tomogra-
phy (PET) (Cherry et al., 2003) and in new therapeutic treatments
such as positherapy and ion-beam therapy. In the latter, nuclear
fragmentation of incident ions can often generate positron emit-
ting particles, which can then provide a measure of the dose depth
distribution for the ion beams (Enghardt et al., 2004). Positrons are
emitted typically at hundreds of keV and must thermalize in

human tissue down to a few hundred eV or less, before they can
form positronium (Ps) or annihilate directly. The observation of the
emitted back-to-back gamma rays arising from the annihilation is
the key physics associated with these tools. Consequently, the
source of the gamma rays is displaced from the source of positrons.
Understanding the positron thermalization process is essential to
optimizing the technologies and informing the development of
positron dosimetry models. There is also a second issue of ionizing
radiation involved in many imaging and therapeutic technologies,
which by definition liberates copious numbers of secondary
electrons along its path. Typically these electrons are produced
with energy distributions less than 20–30 eV. These low-energy
electrons thermalize in human tissue through a variety of energy
deposition processes. Although low in energy, these electrons have
recently been shown to be a source of DNA damage (Boudaiffa
et al., 2000) and hence understanding the transport of low-energy
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secondary electrons is key to understanding radiation damage and
informing dosimetry models.

Water is often used as a surrogate for modeling human tissue.
Modeling charged particle transport in human tissue is dependent
on, amongst other things (i) an accurate microscopic picture
involving a complete and accurate set of cross-sections for
positrons and electrons in water, and (ii) an accurate transport
theory/simulation linking the microscopic and macroscopic
scales. This is the focus of our program and the current paper.

Compilation of the best available set of cross-sections for all
collisional processes (e.g. elastic, rotations, vibrations, etc.) is
generally based on a critical assessment of available experimental
studies and theoretical calculations (Itikawa and Mason, 2005).
A key question, however, is establishing the completeness and
accuracy of the resulting cross-section sets, and it is here that
experimental swarm physics continues to play an important role
(Huxley and Crompton, 1974; Petrovic et al., 2009). The reader is
referred to recent studies of electron swarms in water (Robson
et al., 2011; Ness et al., 2012), where the consistency of electron–
water cross-section sets with experimental swarm data has been
investigated. The ability of swarm experiments to discriminate on
the consistency or otherwise of the cross-section sets demands
the most accurate transport theory to analyze the data. There is a
large body of literature for swarm transport theory focussed on
establishing such accuracy through benchmarking transport
codes and simulations (Ness and Robson, 1986; Raspopović
et al., 1999; Petrovic et al., 2002), including a recent study of
positrons in water (Banković et al., 2012b). Our program aims to
apply such theories and codes to the field of radiation damage
modeling.

Often human tissue is simply treated as a gas at liquid
densities in the field of radiation damage modeling, thus facil-
itating the use of the highly accurate gas-phase cross-sections
that are available. Electron swarm measurements in liquids and
dense gases generally indicate that such an assumption is ques-
tionable, however, particularly at low energies. We have recently
developed a theory that combines the binary collision (gas-phase)
cross-section data with information on the structural properties
of the soft-condensed matter, thus allowing us to consider multi-
ple (coherent) scattering effects (White and Robson, 2009, 2011).
We believe that experimental swarm studies in liquids and dense
gases provide key benchmarks required for accurately accounting
for the soft-condensed nature of media in any transport theory or
simulation used in modeling charged particle thermalization in
human tissue. We explore this procedure further in this paper.

In this paper, we present the current status of our program of
modeling low-energy electron and positron transport in water.
In Section 2 we present two independent techniques for transport
modeling—Boltzmann equation and Monte-Carlo simulation
treatments. The key role of swarm physics in establishing the
accuracy and consistency of cross-section sets is considered in
Section 3 along with a discussion of the differences between
electron and positron transport in water vapor and the differences
between gas and liquid phase transport. We finish with a study of
the thermalization of low-energy positrons (o150 eV) in water in
Section 4.

2. Transport models: Boltzmann equation and Monte-Carlo
simulation techniques

The analysis of charged particle motion in matter can be treated
semi-classically by Boltzmann equation or Monte-Carlo simulation
techniques. Both effectively follow an ensemble of particles as they
move through phase-space (combined configuration r and velocity
c spaces) under the action of forces and collisional processes.

Boltzmann equation methods solve directly for the phase-space
distribution function f ðr,c,tÞ (Boltzmann, 1872)
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Here r c denotes, the electric field while q and m are the charge and
mass of the particle, respectively. Also, J¼ Jelasþ Jinelþ JPsþ Jaþ Jion is
a linear collision operator representing the various collisional
processes with the medium. The collision operator Jelas describes
elastic scattering processes and the operator describing Ps forma-
tion, JPs ¼ n0csPsðcÞ, where n0 is the number density of the
molecules of the background medium, and sPsðcÞ is the Ps forma-
tion cross-section. The positron annihilation operator Ja is similarly
defined in terms of an annihilation cross-section saðcÞ, while Jinel is
taken here to be the semi-classical inelastic collision operator
(Wang-Chang et al., 1964). For ionization processes, we implement
the ionization collision operator Jion detailed in Ness and Robson
(1986). This is the microscopic picture. Solution for the phase-
space distribution function f ðr,c,tÞ enables calculation of macro-
scopic measurable quantities through appropriate averages, e.g.
the local charged particle density at time t is given by

nðr,tÞ ¼

Z
f ðr,c,tÞ dc: ð2Þ

Monte-Carlo simulation methods follow event by event the
trajectory of each charged particle in the system. By considering
an ensemble of such charged particles, one can then approximate
(simulate) the charged-particle phase-space distribution function.
Measurable macroscopic quantities are formed from appropriate
averaging over the members of the ensemble.

In what follows, we briefly discuss the methods of solution and
simulation used in this study. These independent techniques have
been exhaustively tested against each other and against experi-
ments for various benchmark systems. This is necessary to ensure
the validity of the techniques.

2.1. Boltzmann equation treatment—a ‘‘multi-term’’ solution

Solution of the Boltzmann equation (1) requires decomposi-
tion of f ðr,c,tÞ in velocity space as discussed below. The first step
in any analysis is typically the representation of the distribution
function in terms of the directions of velocity space through an
expansion in spherical harmonics (Robson and Ness, 1986)

f ðr,c,tÞ ¼
X1
l ¼ 0

Xl

m ¼ �l

f ðlÞm ðr,c,tÞY ½l�mðĉÞ, ð3Þ

where Y ½l�mðĉÞ are spherical harmonics and ĉ denotes the angles of
c. While common practice is to set the upper bound of the
l-summation to 1 (i.e., the two-term approximation) and consider
only m¼0 (i.e., a Legendre polynomial expansion), we do not
make any such restrictive assumptions in this theory, thus
avoiding serious error (Ness and Robson, 1986; White et al.,
2002). In best practice, the integer lmax is successively incremen-
ted until a prescribed accuracy criterion is met, as considered
below. Combining (1) and (3) leads to the following hierarchy of
coupled integro-differential equations for f ðlÞm :
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Expressions for the matrix elements of the streaming operator on
the LHS are given in Robson and Ness (1986) and Ness and Robson
(1986). The collision matrices e.g. /lm J

�� �� l0m0S¼ ½Jl
elasþ Jl

inelþ

Jl
Psþ Jl

aþ Jl
ion�dl0 ,l dm0 ,m are all diagonal in l and m, since the collision

operators are all scalars. Details of the numerical schemes
required for the solution of (4) are presented in the Appendix.
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