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a b s t r a c t

In the present paper, a complicated strongly nonlinear oscillator with cubic and harmonic restoring force,
has been analysed and solved completely by harmonic balance method (HBM). Investigating analytically
such kinds of oscillator is very difficult task and cumbersome. In this study, the offered technique gives
desired results and to avoid numerical complexity. An excellent agreement was found between approx-
imate and numerical solutions, which prove that HBM is very efficient and produces high accuracy
results. It is remarkably important that, second-order approximate results are almost same with exact
solutions. The advantage of this method is its simple procedure and applicable for many other oscillatory
problems arising in science and engineering.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

Introduction

Nonlinear oscillations are important fact in physical science,
mechanical structures and other engineering problems. Naturally,
all differential equations involving engineering and physical phe-
nomena are nonlinear. The methods of solutions of linear differen-
tial equations are comparatively easy and well established. On the
contrary, the techniques of solutions of nonlinear differential equa-
tions (NDEs) are less available and have no exact solution and, in
general, linear approximations are frequently used. Nowadays,
NDEs have been the subject of all-embracing studies in various
branches of nonlinear science and engineering. A special class of
analytical solutions named strongly nonlinear oscillator with cubic
and harmonic restoring force has a lot of importance, because, most
of the phenomena that arise in mathematical physics and engineer-
ing fields can be described by NDEs. Therefore, investigating
strongly nonlinear oscillator with cubic and harmonic restoring
force solutions is becoming increasingly attractive in nonlinear
sciences. Moreover, obtaining exact solutions for nonlinear oscilla-
tory problems has many difficulties. It is very difficult to solve non-
linear problems and in general it is often more difficult to get an
analytic approximation than a numerical one for a given nonlinear
problem. To overcoming the shortcomings, many new analytical
techniques have been successfully developed by diverse groups of

mathematicians and physicists, such as, Perturbation Method [1],
Homotopy Perturbation Method [2], Modified Homotopy
Perturbation Method [3,4], Rational Homotopy Perturbation
Method [5], He’s Homotopy Perturbation Method [6], Modified
He’s homotopy Perturbation Method [7], Asymptotic Method
[8–11], Optimal Iteration Perturbation Method [12], Generalization
of Modified Differential Transforms Method [13–16], and so on.
Several other authors used many powerful analytical methods in
the field of approximate solutions especially for strongly nonlinear
oscillators like Max–Min Approach Method [17,18], Algebraic
Method [19], Parameter Expansion Method and Variational
Iteration Method [20–22], Amplitude Frequency Formulation
Method [23], Energy Balance Method [24,25], He’s Energy Balance
Method [26,27], Rational Energy Balance Method [28], Rational
Harmonic Balance Method [29], Residue Harmonic Balance
Method [30–33], Newton-harmonic Balancing Approach [34], and
so on for solving NDEs. The HBM is another technique for solving
strongly nonlinear systems. Borges et al. [35] and Bobylev et al.
[36] first provided overviews of HBM. Mickens [37–39] was first
applied HBM in truly nonlinear oscillators. Due to his contribution
he is known as father of HBM. Afterwards, Belendez et al. [40] and
others researchers [41–43] has significantly improved the HBM.
The HBM provides a general technique for calculating approxima-
tions to the periodic solutions of linear and NDEs. It corresponds
to a truncated Fourier series and allows for the systematic determi-
nation of the coefficients to various harmonics and the angular fre-
quency. The significance of the method is that it may be applied to
differential equations for which the nonlinear terms are not small.
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For strongly nonlinear oscillatory problems, perturbation
techniques and other analytical methods mentioned above do
not provide expected results. Moreover, a set of difficult nonlinear
algebraic equations appear when HBM is formulated. But in classi-
cal HBM and some modifications of HBM discussed above there is
no clear idea for solving these complicated nonlinear higher order
algebraic equations especially in the case of a large oscillation. To
overcome these aforementioned issues, we have offered an analyt-
ical technique based on modified harmonic balance method
(MHBM) for solving strongly nonlinear systems. In this technique,
a new parameter (small) has been introduced to solve the nonlin-
ear algebraic equations by a power series solution when the non-
linear terms of the original equation are neither significant nor
small. The higher order approximations (mainly second approxi-
mation) have been obtained for strongly nonlinear oscillators with
cubic and harmonic restoring force. Comparison of the obtaining
results with its exact solutions which show that the proposed
method is effective and convenient for solving these analytical
results. The advantage of the MHBM is that the solution gives more
correct results than corresponding many existing solutions.

The objective of this article is to employ the MHBM to find new
approximate solutions of strongly nonlinear oscillator with cubic
and harmonic restoring force. The MHBM is very easy, direct, con-
cise and simple to implement compared to other existing methods.

The rest of the article is organized as follows: In Section 2, we
give the outline of the method. In Section 3, we implement this
method to strongly nonlinear oscillator with cubic and harmonic
restoring force. Finally, in Section 4, concluding remarks are given.

The method

Let us consider a nonlinear differential equation

€xþx2
0x ¼ �ef ðxÞ and the initial conditions ½xð0Þ
¼ A0; _xð0Þ ¼ 0�; ð1Þ

where f ðxÞ is a nonlinear function such that f ð�xÞ ¼ �f ðxÞ, x0 P 0
and e is a constant.

Consider a periodic solution of Eq. (1) is in the form

x ¼ A0ðq cosðxtÞ þ u cosð3xtÞ þ v cosð5xtÞ þw cosð7xtÞ þ z

� cosð9xtÞ � � �Þ; ð2Þ

where A0, q and x2 are constants. If q ¼ 1� u� v � � � � and the ini-
tial phase ðxtÞ0 ¼ 0, solution Eq. (2) readily satisfies the given initial
condition Eq. (1).

Substituting Eq. (2) into Eq. (1) and expanding f ðxÞ in a Fourier
series, it converts to an algebraic identity as follows:

A0½qðx2
0 �x2Þ cosðxtÞ þ uðx2

0 � 9x2Þ cosð3xtÞ þ � � ��
¼ �e½F1ðA0;u; � � �Þ cosðxtÞ þ F3ðA0; u; � � �Þ cosð3xtÞ þ � � �� ð3Þ

By comparing the coefficients of equal harmonics of Eq. (3), the
following nonlinear algebraic equations are found

qðx2
0 �x2Þ ¼ �eF1; uðx2

0 � 9x2Þ ¼ �eF3; vðx2
0 � 25x2Þ

¼ �eF5; � � � ð4Þ

With the help of the first equation, x2 is eliminated from the
rest of Eq. (4). Thus Eq. (4) takes the following form

qx2 ¼ qx2
0 þ eF1; 8x2

0uq ¼ eðqF3 � 9uF1Þ; 24x2
0vq

¼ eðqF5 � 25vF1Þ; � � � ð5Þ

By substitution q ¼ 1� u� v � � � �, and simplification, second-,
third- equations of Eq. (5) take the following form

u ¼ G1ðx0; e;A0;u; v; � � � ; k0Þ; v ¼ G2ðx0; e;A0;u; v; � � � ; k0Þ; � � � ;
ð6Þ

where G1;G2; � � � exclude respectively the linear terms of u;v; � � �.
Whatever the values of e, x0 and A0 there exists a parameter

k0ðe;x0;A0Þ � 1, such that u;v ; � � � are expandable in following
power series in terms of k0 as

u ¼ U1k0 þ U2k
2
0 þ � � � ; v ¼ V1k0 þ V2k

2
0 þ � � � ; � � � ð7Þ

where U1;U2; � � � ;V1;V2; � � � are constants.
Finally, substituting the values of u;v ; � � � from Eq. (7) into the

first equation of Eq. (5), x is determined. This completes the deter-
mination of all related functions for the proposed periodic solution
as given in Eq. (2).

Example

In the present paper, we consider a strongly nonlinear oscillator
with cubic and harmonic restoring force

€xþ xþ ax3 þ b sinðxÞ ¼ 0; ð8Þ

where a and b are known constants and dot denotes derivative with
respect to time t. The initial conditions are given by

½xð0Þ ¼ A0; _xð0Þ ¼ 0�: ð9Þ

where substitution of approximation

sinðxÞ ¼ x� x3

6
: ð10Þ

into Eq. (8) yields

€xþ xþ ax3 þ b x� x3

6

� �
¼ 0: ð11Þ

From Eq. (2) the first-order approximation solution of Eq. (11) is

x ¼ A0 cosðx1tÞ ð12Þ

Now substituting Eq. (12) into Eq. (11) and setting the coeffi-
cient of cosðx1tÞ equal to zero the following algebraic equation is
obtained

1þ 3aA2
0

4
þ b� A2

0b
8
�x2

1 ¼ 0: ð13Þ

Thus from Eq. (13) the first-order approximate angular
frequency is

x1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3aA2

0

4
þ b� A2

0b
8

s
: ð14Þ

Therefore the first-order approximation solution of Eq. (9) is Eq.
(12) i:e: x ¼ A0 cosðx1tÞ where x1 is given by Eq. (14).

Let us consider a second-order approximation solution

x ¼ A0 cosðx2tÞ þ A0uðcosð3x2tÞ � cosðx2tÞÞ ð15Þ

Substituting Eq. (15) into the Eq. (11) and then equating the
coefficients of cosðx2tÞ and cosð3x2tÞ, the following equations are

1þ 3aA2
0=4þ b� A2

0b=8�x2
2 � u� 3aA2

0u=2� buþ A2
0bu=4

þx2
2uþ 9aA2

0u2=4� 3A2
0bu2

=8� 3aA2
0u3=2þ A2

0bu3
=4 ¼ 0; ð16Þ

aA2
0=4� A2

0b=24þ uþ 3aA2
0u=4þ bu� A2

0bu=8� 9x2
0u� 9aA2

0u2=4

þ 3A2
0bu2

=8þ 2aA2
0u3 � A2

0bu3
=3 ¼ 0 ð17Þ
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