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a b s t r a c t

In this paper, a new novel energy balance method based on the harmonic balance method is proposed to
obtain higher-order approximations of strongly nonlinear problems arising in engineering. Especially,
second-order approximation is considered in this paper. Results found in this paper are compared with
the exact result and other existing results. The results show that the proposed method gives better result
for both small and large amplitudes of oscillation than other existing results. The method is illustrated by
examples. It has been shown that the proposed method is very effective, convenient and quite accurate to
nonlinear engineering problems.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of nonlinear oscillations is important issue in engi-
neering because many practical engineering components consist
of vibrating systems that can be modeled using oscillator systems.
Nonlinear oscillations are modeled by nonlinear differential equa-
tions. Many analytical approximate techniques were developed to
solve these nonlinear differential equations. The traditional meth-
ods can not used to solve these nonlinear problems if no small
parameter exists in equations. To overcome these shortcomings,
many asymptotic techniques have been developed to solve
strongly nonlinear systems such as parameter-expanding method
[1,2], modified Lindstedt–Poincare method [3,4], homotopy pertur-
bation method (HPM) [5], variational iteration method (VIM) [6–9]
and energy balance method (EBM) [10,11]. He [10] obtained only
first-order approximation by using energy balance method. Usu-
ally, a set of algebraic equations with complex nonlinearities
appears when EBM is formulated to obtain higher-order approxi-
mations. Recently, some authors [12–14] have extended the energy
balance method to obtain higher-order approximations for
strongly nonlinear oscillators. Durmaz et al. [12] obtained a
higher-order approximation of energy balance method based on
collocation method. Durmaz and Kaya [13] used Galerkin method
as weighting function to solve strongly nonlinear systems. Khan
and Mirzabeigy [14] developed an improved energy balance
method based on combining collocation and Galerkin–Petrov

methods. In these articles [12–14], the algebraic nonlinear equa-
tions (which are not written in closed form) are solved
numerically.

In this article, a new novel energy balance method based on
the harmonic balance method has been presented to obtain the
higher-order approximations of strongly nonlinear problems. The
algebraic nonlinear equations found in this paper are solved
analytically and also to be written in closed form. Generally, the
second-order approximation is considered in this paper. Two
examples are given to verify the accuracy and convenient of the
proposed method. The results (obtained in this paper) give better
results and provide high accuracy than other existing results
[12–14] as compared with exact result.

2. The basis idea of He’s energy balance method

Let us consider a general form on the nonlinear problems in the
following form

€xþ f ðxÞ ¼ 0; ð1Þ
with initial conditions

xð0Þ ¼ A; _xð0Þ ¼ 0: ð2Þ
Its variational can be written as

JðxÞ ¼
Z T=4

0
�1
2
_x2 þ FðxÞ

� �
dt; ð3Þ

where T ¼ 2p
x is a period of nonlinear oscillation and FðxÞ ¼ R f ðxÞdx.
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The Hamiltonian can be written in the following form

HðxÞ ¼ 1
2
_x2 þ FðxÞ ¼ FðAÞ: ð4Þ

Eq. (4) gives the following residual

RðtÞ ¼ 1
2
_x2 þ FðxÞ � FðAÞ ¼ 0: ð5Þ

The first-order approximate solution was chosen in the follow-
ing form

xðtÞ ¼ A cosxt: ð6Þ
Substituting Eq. (6) into Eq. (5) yields the following residual

RðtÞ ¼ 1
2
A2x2 sin2xt þ FðA cosxtÞ � FðAÞ ¼ 0: ð7Þ

And finally collocation at xt ¼ p
4 gives

xðAÞ ¼ 2
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðAÞ � F

ffiffiffi
2

p

2
A

 !vuut : ð8Þ

3. New novel energy balance method

Consider the trial solution of Eq. (1) in the following form

xðtÞ ¼ Aðð1� uÞ cosxt þ u cos 3xtÞ ð9Þ
Eq. (9) satisfies the initial conditions given in Eq. (2).

Substituting Eq. (9) into the left-side of Eq. (5), then dividing by
the factor secxt and we obtain the following Fourier series
expansions:

_x2=2þ FðxÞ � FðAÞ� �
secxt= ¼ c1 cosxt

þ c3 cos 3xt þ � � � ; ð10Þ

where c1 and c3 are calculated from the following

c2n�1 ¼ 4
p

Z p
2

0

_x2=2þ FðxÞ � FðAÞ
secxt

� �
cosð2n� 1Þu du;

n ¼ 1;2; . . . ð11Þ
Substituting the right-side of Eq. (10) into the left-side of Eq. (5)

and then equating the coefficients of the terms cosu and cos 3u,
we get two nonlinear algebraic equations whose solution provide
the unknown frequency, x and unknown coefficient, u in terms
of amplitude A. Therefore, the determination of second-order
approximation is clear.

4. Examples

4.1. Example 1

We consider a mass attached to the centre of a stretched elastic
wire which is an example of a conservative nonlinear oscillatory
system with an irrational elastic item. In dimensionless form, the
equation of motion of this system is [1]:

€xþ x� kxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ¼ 0; ð12Þ

where over dots denote differentiation with respect to time t and
0 < k � 1.

The initial conditions are

xð0Þ ¼ A; _xð0Þ ¼ 0; ð13Þ
where A denotes the maximum amplitude.

This system oscillates between symmetric bounds ½�A;A�, and
its angular frequency and corresponding periodic solution are
dependent on the amplitude A.

The variational of Eq. (12) can be written as

JðxÞ ¼
Z T=4

0
�1
2
_x2 þ 1

2
x2 � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p� �
dt: ð14Þ

Therefore, the Hamiltonian can be written in the following form

HðxÞ ¼ 1
2
_x2 þ 1

2
x2 � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� 1
2
A2 þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

q
¼ 0: ð15Þ

Substituting Eq. (9) into the left-side of Eq. (15), then dividing
by the factor secxt we obtain the following Fourier series
expansions:

_x2=2þ x2 � A2
	 


2� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

q� �� �
secxt=

¼ c1 cosxt þ c3 cos 3xt þ � � � ; ð16Þ

where

c1 ¼ �A2 þ 8k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

q
þ A2x2 þ 4A2x2uþ bþ cuþ � � � ;

c3 ¼ A2 þ 2A2u� A2x2 þ 2A2x2uþ dþ euþ � � � ;

b ¼ 32kðð1þ A2ÞKð�A2Þ � ð1þ 2A2ÞEð�A2ÞÞ=ð3pA2Þ;
c ¼ 128kð1þ 8A2ÞEð�A2ÞÞ=ð15pA4Þ;

d ¼ 32kððA4 � 7A2 � 8ÞKð�A2Þ þ ð8þ 3A2 � 2A4ÞEð�A2ÞÞ=ð15pA4Þ;

e ¼ 32kð768þ 524A4ÞKð�A2Þ þ ð40A6 � 108A4ÞKð�A2ÞÞ=ð105pA6Þ:

Herein, KðmÞ and EðmÞ are the complete elliptic integrals of the
first and second kind, respectively, defined as follows [15]

KðmÞ ¼
Z p=2

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m cos2 h

p ; ð17Þ

EðmÞ ¼
Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m cos2 h

p
dh: ð18Þ

Substituting the right-side of Eq. (16) into the left-side of Eq.
(15) and then equating the coefficients of the terms cosu and
cos3u equal to zeros, respectively, we obtain

�A2 þ 8k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

q
þ A2x2 þ 4A2x2uþ bþ cu ¼ 0; ð19Þ

A2 þ 2A2u� A2x2 þ 2A2x2uþ dþ eu ¼ 0; ð20Þ
Solving Eqs. (19) and (20), we obtain the unknown coefficient, u

and the second-order approximate frequency, x as

u ¼ bþ dþ 8k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
6b� c � e� 8A2 þ 48k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p ; ð21Þ

and

xðAÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

A2�
8k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p
A2 þðbþdþ8k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p
Þð4A2�4bþ c�32k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p
Þ

A2ð8A2�6bþcþe�48k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p
Þ

vuut :

ð22Þ

Therefore, the second-order approximation becomes

xðtÞ ¼ A ð1� uÞ cosxt þ u cos 3xtð Þ; ð23Þ
where u3 and x respectively, are given in Eqs. (21) and (22).
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