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a b s t r a c t

The sum-peak method was successfully applied to the determination of the activity of extended 60Co

sources measured on a HPGe detector. Monte Carlo simulations were used to account for the effects of

the spatial variation of the efficiency across the sample volume and for the angular correlations between

the emitted gamma rays. The determined activities agree with the reference values within a range

of 1.0%.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The sum-peak method for activity standardization by means of
a single NaI or HPGe detector was introduced in a series of papers
by Brinkman and his collaborators in the 1960s (Brinkman et al.,
1963; Brinkman and Aten, 1963, 1965) and has been used
extensively ever since (Debertin and Helmer, 1988). Most
commonly, it is applied to point sources measured in a close
geometry, which not only improves the statistics of the sum-peak
area, but also eliminates or reduces the need to take into account
the angular correlation effects.

It is, nevertheless, desirable to be able to standardize also
extended sources by means of the sum-peak method. An example
may be measurements aimed at the half-life determination of
very long-lived radionuclides, e.g. 176Lu (Gehrke et al., 1990),
which exhibit an appropriate decay scheme for the sum-peak
method application, but may require a substantial amount of
material to be measured in order to obtain good statistics.

For an extended source, however, the effects of the spatial
variations of the full-energy peak and the total efficiency across

the sample’s volume cannot be ignored. They make the original
formulae by Brinkman invalid, as demonstrated by Sutherland
and Buchanan (1967), who analyzed measurements of extended
sources of 125I of various sizes.

That is why we decided to apply a correction factor to these
formulae, determined with the help of Monte Carlo calculations.
The advantage of this approach is that the experimental procedure
and the formulae remain, apart from the factor itself, in their
usual form and that good accuracy can be obtained. In addition,
Monte Carlo simulations can take any angular correlation effect
into account directly.

2. Method

The approach presented in this paper applies to 60Co, which
emits two coincident gamma rays. A simplified decay scheme was
adopted with all the less abundant gamma rays neglected. The
emission probability of the first gamma ray with the energy E1

cancels out in the final result and is therefore not considered in
the derivation below, which is a consequence of the assumption
that the second gamma ray with energy E2 always follows the first
one, with negligible probability of internal conversion. A sum
peak appears in the spectrum at the energy E1 þ E2. Angular
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correlations between the directions of emission of the two gamma
rays can be described by the correlation function WðOÞ, which
gives the probability dPðOÞ ¼WðOÞ dO that the second gamma
ray is emitted into the solid angle dO relative to the first one.
Since this probability distribution is independent of the azimuthal
angle, it can be given as a function of the polar angle y only
(Siegbahn, 1955). 60Co decays in a two-step ð4þ ! 2þ ! 0þÞ
cascade, for which the correlation function can be computed and
has also been measured (Siegbahn, 1955):

WðyÞ ¼ 1þ 0:1020P2ðcosyÞ þ 0:0091P4ðcos yÞ. (1)

Here, PiðxÞ denotes the Legendre polynomial of the order i.
For a point source, the count rate _T in the entire spectrum and

the count rates _N1; _N2 and _N12 in the peaks corresponding to the
energies E1; E2 and the sum-peak energy, respectively, are related
to the activity of the source A, the full-energy-peak efficiencies �1

and �2 for the two gamma-ray lines and the corresponding total
efficiencies Z1 and Z2 through the following set of equations:

_N1 ¼ A�1ð1�wtotalZ2Þ,

_N2 ¼ A�2ð1�wtotalZ1Þ,

_N12 ¼ Awpeak�1�2,

_T ¼ AðZ1 þ Z2 �wtotalZ1Z2Þ. (2)

The factors wtotal and wpeak take the angular correlation into
account. They are not necessarily the same for partial or total
energy deposition, as pointed out by Kim et al. (2003).

If we are dealing with an extended sample, the above
equations are no longer valid. However, an extended source can
be considered as a collection of point sources:

_N1 ¼

Z
V

að~rÞ�1ð~rÞ½1�wtotalð~rÞZ2ðrÞ�d
3~r,

_N2 ¼

Z
V

að~rÞ�2ð~rÞ½1�wtotalðrÞZ1ðrÞ�d
3r,

_N12 ¼

Z
V

að~rÞwpeakð~rÞ�1ð~rÞ�2ð~rÞd
3r,

_T ¼

Z
V

að~rÞ½Z1ð~rÞ þ Z2ð~rÞ �wtotalð~rÞZ1ð~rÞZ2ð~rÞ�d
3~r. (3)

All quantities now depend on the position ~r inside the sample
and the activity concentration að~rÞ has been introduced. If,
however, we can consider the activity to be distributed homo-
geneously in the sample, Eqs. (3) can be simplified to

_N1 ¼ c1A; _N2 ¼ c2A; _N12 ¼ c12A; _T ¼ ctA. (4)

Here c1; c2; c12 and cT are constants for a given sample size,
position and composition and for a given detector on which the
sample is measured, and A is the activity of the extended sample
as a whole.

From this set of equations it follows that

A ¼
c12

c1c2 þ c12ct
ð _T þ _N1

_N2= _N12Þ ¼ Cð _T þ _N1
_N2= _N12Þ, (5)

where a new constant C has been defined. Up to this constant, the
equation is the same as the one derived for a point source by
Brinkman et al. (1963). According to this equation, no efficiencies
need to be known to determine the activity of the source, which is
the main advantage of the sum-peak method.

The correction factor C is a function of the efficiencies �1; �2;Z1

and Z2. On the other hand, it is a constant when we are dealing
with a fixed geometry and fixed sample characteristics. In our
approach, the correction factor C is determined by means of
Monte Carlo simulations, as will be explained in the next section.
This approach has the advantage that the easily measurable
quantities _T ; _N1; _N2 and _N12 yield the desired result, i.e. the
activity of the source.

3. Monte Carlo simulations

In order to determine the correction factor accounting for the
extended nature of the sources, Monte Carlo simulations were run
with the GEANT3 package (Brun et al., 1987). Most of the
parameters of the detector model were taken directly from the
manufacturer’s data sheet. Since some data were not available in
the sheet, some parameters, such as the diameter of the end-cap,
had to be measured or estimated. The data were used without any
optimization, and are listed in Table 1. The shielding comprising
layers of lead, copper and plastic was also taken into account in
the simulation. The source was modelled by sampling the
geometrical dimensions of the standard ampoules of the Physi-
kalisch-Technicshe Bundesanstalt (PTB), which were used for the
measurements. The sealed ampoules are cylindrical in shape,
made of glass and have an outer diameter of 15.2 mm. The height
without the sealing part is about 40 mm and the thickness of the
wall and bottom is 0.5 mm. The composition and density of its
glass material were taken from the manufacturer’s data.

Five hundred million events were simulated for each different
sample geometry. A uniform distribution of the random origin of
the events was assumed within the sample volume. For each
simulated event two gamma rays were emitted, the first one with
the energy E1 and the second one with the energy E2. The
direction of the first gamma ray was chosen randomly from a
uniform distribution spanning the full 4p solid angle. The
direction of the second gamma ray was then determined
according to Eq. (1), applying the Monte Carlo rejection method
(Press et al., 1992).

For each sample geometry, the simulation was run twice, once
with the angular correlations taken into account, and once
ignoring them. In both cases, the correction factor C required in
Eq. (5) was determined as

C ¼ N=ðT þ N1N2=N12Þ, (6)

where N is the number of simulated events and N1;N2 and N12 are
the areas of the peaks at the energies E1; E2 and E1 þ E2,
respectively. These values were determined from the simulated
spectra and so was the total number of counts in the spectrum, T.
The analysis of the spectra was straightforward since the perfect
resolution of the simulated spectrum made the peaks appear in a
single channel. It is to be noted that Eq. (6) corresponds to Eq. (5)
when the count rates are multiplied by the measurement time.

ARTICLE IN PRESS

Table 1
The parameters of the detector model used in the Monte Carlo simulations

Parameter Value A in mm Value B in mm ðCB � CAÞ=CA ð%Þ

Crystal diameter 58.8 58.0 0.1

Crystal length 78.0 76.0 �0.09

End-cap diameter 70.0 80.0 0.05

End-cap thickness 1.0 2.0 �0.40

Top dead layer 3.0E�4 3.0E�4 –

Side dead layer 3.0E�4 3.0E�4 –

Window thickness 0.5 0.5 –

Window-crystal distance 3.0 4.0 �0.2

Well length 65.0 60.0 �0.02

Well diameter 10.0 8.0 0.14

Crystal rounding 0.0 5.0 0.05

Sample-window distance 14.0 16.0 �0.09

Square root of quadratic sum of components 0.50

The values denoted by A were taken from the manufacturer’s data sheet. Some of

them were then changed one by one to the values denoted by B to assess the

reliability and uncertainty of the results obtained through simulation. The

corresponding values of the correction factor are denoted by CB and CA . They

refer to Ampoule B (see Table 2). The end-cap material was in all cases aluminum

and the window material was beryllium.
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