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a b s t r a c t

In this paper a modified fourth order Numerov method is presented for singularly perturbed differential–
difference equation of mixed type, i.e., containing both terms having a negative shift and terms having
positive shift. Similar boundary value problems are associated with expected first exit time problems
of the membrane potential in the models for the neuron. To handle the negative and positive shift terms,
we construct a special type of mesh, so that the terms containing shift lie on nodal points after discret-
ization. The proposed finite difference method works nicely when the shift parameters are smaller or big-
ger to perturbation parameter. An extensive amount of computational work has been carried out to
demonstrate the proposed method and to show the effect of shift parameters on the boundary layer
behavior or oscillatory behavior of the solution of the problem.

Introduction

Any system involving feedback control will almost involve time
delays. These arise because a finite time is required to sense the
information and then react to it. A singularly perturbed differen-
tial–difference equation is an ordinary differential equation in
which the highest derivative is multiplied by a small parameter
and involves at least one delay term. Such problems arise fre-
quently in the mathematical modeling of various physical and bio-
logical phenomena like optically bistable devices [1], description of
the human pupil reflex [2], a variety of models for physiological
processes or diseases and variational problems in control theory
[3,4], the first exit time problem in the modeling of the activation
of neuronal variability [5]. Lange and Miura [5,6] gave an asymp-
totic approach in the study of a class of boundary value problems
for linear second order differential–difference equations in which
the highest order derivative is multiplied by a small parameter.
An extensive numerical work had been initiated by Kadalbajoo
et al. [7–11]. In [12] Ramos has presented a variety of exponential
methods for the numerical solution of linear ordinary differential–
difference equations with a small delay based on piecewise analyt-
ical solutions of advection–reaction–diffusion operators. In [13],
the authors Jugal Mohapatra, Srinivasan Natesan constructed a
numerical method for a class of singularly perturbed differential–
difference equations with small delay.

In this paper we modified the fourth order Numerov method
and applied to singularly perturbed differential–difference equa-
tions of mixed type. To handle the negative and positive shift
terms, we construct a special type of mesh, so that the terms con-
taining shift lie on nodal points after discretization. The proposed
finite difference method works nicely when the shift parameters
are smaller or bigger to perturbation parameter. An extensive
amount of computational work has been carried out to demon-
strate the proposed method and to show the effect of shift param-
eters on the boundary layer behavior and oscillatory behavior of
the solution of the problem.

Modified fourth order Numerov method

We consider a linear singularly perturbed differential–differ-
ence equation of mixed type i.e., equation containing both the neg-
ative and positive shift terms.

e2y00ðxÞ þ aðxÞyðx� dÞ þxðxÞyðxÞ þ bðxÞyðxþgÞ ¼ f ðxÞ ð1Þ

on 0 < x < 1, 0 < e << 1, subject to the interval and boundary
conditions

yðxÞ ¼ /ðxÞ for � d 6 x 6 0 and yðxÞ ¼ wðxÞ for 1 6 x 6 1þg
ð2Þ

where a(x), x(x), b(x), f(x), /(x) and w(x) are smooth functions, d
and g are the small shifting parameters. For a function y(x) to
constitute a smooth solution to the problem (1), (2) it must be
continuous in the interval [0,1] and be continuously differentiable
in the interval (0,1). For the shifts d, g equal to zero and if
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a(x) + x(x) + b(x) < 0 on the interval [0,1], then the solution exhibits
boundary layers at both the ends of the interval [0,1].

We rearrange the differential Eq. (1) and (2) as

e2y00ðxÞ ¼ gðx; yðxÞ; yðx� dÞ; yðxþgÞÞ ð3Þ

where gðx; yðxÞ; yðx� dÞ; yðxþgÞÞ ¼ f ðxÞ � aðxÞyðx� dÞ� xðxÞyðxÞ�
bðxÞyðxþgÞ

Now, we construct a special type of mesh so that the terms con-
taining the shift parameters lie on the nodal points after discretiza-
tion. We divide the interval [0, 1] into N equal parts by choosing
the mesh parameter h such that h ¼ d

k ¼
g
‘
, where k and ‘ are posi-

tive integers chosen such that 1 6 k, ‘ 6 N.
At x = xi, the above differential equation can be written as

e2y00ðxiÞ ¼ gðxi; yðxiÞ; yðxi � dÞ; yðxi þgÞÞ ¼ gi; ð4Þ

where gi ¼ fi � aiyi�k �xiyi � biyiþ‘;

yi ¼ yðxiÞ; fi ¼ f ðxiÞ;ai ¼ aðxiÞ;xi ¼ xðxiÞ;bi ¼ bðxiÞ:

Now, we consider the fourth order Numerov finite difference meth-
od [14] to solve the Eq. (4) and this equation is approximated by the
following finite difference scheme:

e2

h2 ðyi�1 � 2yi þ yiþ1Þ ¼
1

12
ðgi�1 þ 10gi þ giþ1Þ ð5Þ

The boundary conditions can be written as

yi ¼ /i;�k 6 i 6 0 and yi ¼ wi; N 6 i 6 N þ ‘ ð6Þ

where /i ¼ /ðxiÞ and wi = w(xi).
Using the definition of gi in Eq. (5), we get the following fourth

order finite difference scheme.

Eiyi�1 þ Fiyi þ Giyiþ1 þ E�i yi�k�1 þ F�i yi�k þ G�i yi�kþ1 þ E��i yiþ‘�1

þ F��i yiþ‘ þ G��i yiþ‘þ1 ¼ Ri ð7Þ

where

Ei ¼
12e2

h2 þxi�1; Fi ¼ �
24e2

h2 þ 10xi;Gi ¼
12e2

h2 þxiþ1;

E�i ¼ ai�1; F
�
i ¼ 10ai;G

�
i ¼ aiþ1; E

��
i ¼ bi�1; F

��
i ¼ 10bi;

G��i ¼ biþ1;Ri ¼ fi�1 þ 10f i þ fiþ1

Using (6), the difference scheme (7) can be written as

Eiyi�1 þ Fiyi þ Giyiþ1 þ E��i yiþ‘�1 þ F��i yiþ‘ þ G��i yiþ‘þ1

¼ Ri � E�i /i�k�1 � F�i /i�k � G�i /i�kþ1 for 1 6 i 6 k� 1

Eiyi�1 þ Fiyi þ Giyiþ1 þ E��i yiþ‘�1 þ F��i yiþ‘ þ G��i yiþ‘þ1 þ G�i yi�kþ1

¼ Ri � E�i /i�k�1 � F�i /i�k for i ¼ k

Eiyi�1 þ Fiyi þ Giyiþ1 þ E��i yiþ‘�1 þ F��i yiþ‘ þ G��i yiþ‘þ1 þ G�i yi�kþ1

þ F�i yi�k ¼ Ri � E�i /i�k�1 for i ¼ kþ 1

Eiyi�1 þ Fiyi þ Giyiþ1 þ E��i yiþ‘�1 þ F��i yiþ‘ þ G��i yiþ‘þ1 þ G�i yi�kþ1

þ F�i yi�k þ E�i yi�k�1

¼ Ri for kþ 2 6 i 6 N � ‘� 2

Eiyi�1 þ Fiyi þ Giyiþ1 þ E��i yiþ‘�1 þ F��i yiþ‘ þ G�i yi�kþ1 þ F�i yi�k

þ E�i yi�k�1 ¼ Ri � G��i wiþ‘þ1 for i ¼ N � ‘� 1

Eiyi�1 þ Fiyi þ Giyiþ1 þ E��i yiþ‘�1 þ G�i yi�kþ1 þ F�i yi�k þ E�i yi�k�1

¼ Ri � G��i wiþ‘þ1 � F��i wiþl for i ¼ N � ‘

Eiyi�1 þ Fiyi þ Giyiþ1 þ G�i yi�kþ1 þ F�i yi�k þ E�i yi�k�1

¼ Ri � G��i wiþ‘þ1 � F��i wiþ‘ � E��i wiþ‘�1 for N � ‘þ 1 6 i 6 N � 1

The above system of equations along with the boundary conditions
y0 = /0 and yN = wN is solved for yi, i = 0, 1, 2,....., N by Gauss elimina-
tion method with partial pivoting. In fact, any numerical method or
analytical method can be used to solve the above system of equa-
tions for yi.
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Fig. 1. The numerical solution of example 1 with e = 0.01 and d = 0.005 for different values of g.

Table 1
Numerical solution of example 1 for d = 0.03, g = 0.07.

N? 100 200 300 400 500

e;

2�1 6.1000e�007 1.6000e�007 7.0000e�008 4.0000e�008 3.0000e�008
2�2 6.7400e�006 1.6900e�006 7.5000e�007 4.2000e�007 2.7000e�007
2�3 5.0780e�005 1.2710e�005 5.6500e�006 3.1800e�006 2.0300e�006
2�4 2.9686e�004 7.4640e�005 3.3200e�005 1.8690e�005 1.1960e�005
2�5 1.6272e�003 4.1624e�004 1.8578e�004 1.0466e�004 6.7020e�005
2�6 6.6542e�003 1.8089e�003 8.1653e�004 4.6180e�004 2.9629e�004

Table 2
Numerical solution of example 2 for d = 0.07, g = 0.03.

N? 100 200 300 400 500

e;

2�1 1.4510e�005 3.6300e�006 1.6100e�006 9.0000e�007 5.8000e�007
2�2 9.3650e�005 2.3420e�005 1.0410e�005 5.8600e�006 3.7500e�006
2�3 5.2693e�004 1.3196e�004 5.8660e�005 3.3000e�005 2.1130e�005
2�4 2.5668e�003 6.4570e�004 2.8731e�004 1.6168e�004 1.0349e�004
2�5 9.9696e�003 2.5626e�003 1.1448e�003 6.4511e�004 4.1321e�004
2�6 3.1132e�002 8.7328e�003 3.9629e�003 2.2454e�003 1.4419e�003
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