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� Practical use of a new method for testing radionuclidic purity.
� We have investigated limitations and possible impacts of the test.
� We have tested the method on both experimental and simulated data.
� We have developed a GUI in MATLAB for an easy usage.
� The test complies with the requirements in Eur. Ph.
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a b s t r a c t

In this paper we present the results of an experimental implementation of the method (Jørgensen et al.,
2012) for testing the radionuclidic purity (RNP) of F-18 compounds.

The overall limitations of the experimental methods and their possible impacts on RNP detectability
have been identified. We have developed an GUI application for use as an easy and automated test tool in
the production procedure.

The test results show that this method fully complies with the requirements in the European Phar-
macopoeia (Eur. Ph.) for RNP of FDG and F-18 Sodium Fluoride.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The widespread use of short lived radiopharmaceuticals for PET
have demonstrated the complexity of establishing radionuclidic
purity (RNP) spanning a product shelf life of several half-lives. A
very important example is F-18 compounds with half-life about
2 h. Here a shelf life of 10 h with a RNP specification >99.9% (as
current European Pharmacopoeia requires) necessitates the de-
tection of a long lived impurity containing 1/32,000 of the activity
at the time of release.

We have in a previous paper (Jørgensen et al., 2012) examined
the mathematical background for using pure half-life determina-
tions to establish such purity levels.

Now we have tested several practical implementations of the
half-life method. In this paper we describe the overall limitations
of the experimental methods and their possible impact on RNP
detectability. The important factors of detector dynamic response
and linearity range, signal-to-background, dead time and timing
accuracy have been identified in the experimental implementation
and their impacts on method sensitivity found.

2. Theory

The RNP test is based on a two component decay model of F-18
and one other contaminating isotope with a half-life of βTR, where
TR is the half-life of F-18. The level of contamination at the time
t¼0 is α, where α is defined as the fraction between the count

rates of the contaminating isotope and F-18, α =
−

A
A
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The number of counts N(t) is described over time by the
equation:
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where N0 is the initial number of counts.
The RNP is defined as:

α
=

+ ( )RNP
1

1 2

2.1. Determination of N0 and the associated uncertainty

The RNP test is based on a comparison of theoretical and
measured data for a decay and therefore the initial number of
counts N0 in the exponential decay is of great importance. Thus we
have to determine this as accurate as possible from the measured
data to establish the theoretical basis for comparison. The limits
for RNP, β and time of measurement have to be corrected in order
to adapt the associated uncertainty of N0.

In (Jørgensen et al., 2012) we proposed that N0 is found as an
average of the first 10 data points (normalized), but this gives rise
to a systematic error, since a data set with an impurity will cause a
value of N0 that deviates from the “true” value, and this will affect
the test result.

For impurities with β < 1 the estimated value of N0 will be
smaller than the true value and vice versa. Instead we determine N0

from an exponential fit of the data points within ⪡t tc, tc being the
time (in minutes) where the impurity starts to dominate, given by:
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Fig. 1 shows a graph of tc (in minutes) as a function of α and β
and it is seen that we safely can make a fit of the data points
within the first hour or two for all relevant isotopes and degrees of
impurities.

In this interval the deviation between the pure and the impure
curve will be very small. The relative deviation can be found as:
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Fig. 2 shows the relative deviation (in %) between the pure and the
impure graph after the first hour, and it is clear that deviations
that small will have no significant impact on the determination of
N0.

The uncertainty σN0 of N0 is the standard deviation found from
the calculation of the exponential fit. In this calculation we have
included the poisson statistical uncertainty on the first few mea-
surements contributing to N0.

2.2. Uncertainty of time

Timing imperfections in the detector chain used increase the
uncertainty of each measurement. One example of that could be
the uncertainty in time which can be converted to an equivalent
uncertainty in the count value by:

σ σ= ( ) ·
( )

dN t
dt 5

equiv time time,

From this (see Appendix A) it is obvious that the uncertainty in
time will have a greater influence on the counts, the higher the
count rate is. The question is then, how large the initial counts can
be without the equivalent uncertainty gets dominating. We choose
σ σ≤equiv poisson:
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which gives (for t¼0):
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Using the timing error in the counter setup as the uncertainty
in time, stime¼1/14 min (see results section), we get the value of
the initial counts, ≤ ·N 5.1 100

6. Below this limit the poisson noise
forms the greater part of the uncertainty, see Fig. 3.

2.3. Total uncertainty of the data points

The uncertainty of N0 propagates through the calculations and
contributes to the uncertainty of each data point. This is calculated
in Appendix B.

Hence, the total uncertainty for each data point in theFig. 1. The figure shows a graph of tc (in minutes) as a function of α and β.

Fig. 2. The graph shows the relative deviation (in %) between the pure and the
impure graph after the first hour as a function of α and β.
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