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H I G H L I G H T S

� Simulations confirmed a tendency to favour inverse regression for calibration.
� Inverse regression has lower error variance than classical regression followed by inversion.
� Our study extended previous studies in include the case with non-negligible errors in predictors.
� Analytical approximations used to estimate variances are not sufficiently accurate for our application.
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a b s t r a c t

One example of top-down uncertainty quantification (UQ) involves comparing two or more measure-
ments on each of multiple items. One example of bottom-up UQ expresses a measurement result as a
function of one or more input variables that have associated errors, such as a measured count rate, which
individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured
value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ,
because some error sources are present in the fielded assay methods used in top-down UQ that are not
present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency
between the two approaches in order to claim understanding of the measurement process.

The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration in-
formation so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will
agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the
top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than
the specified tolerance, there must be omitted sources of error beyond those predicted from calibration
uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear
calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-
negligible error in predictors, (3) classical regression followed by inversion with negligible error in
predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our
illustrations are of general interest, but are drawn from our experience with nuclear material assay by
non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment
meter principle.

Previous papers that ignore error in predictors have shown a tendency for inverse regression to have
lower error variance than classical regression followed by inversion. This paper supports that tendency
both with and without error in predictors. Also, the paper shows that calibration parameter estimates
using error in predictor methods perform worse than without using error in predictor methods in the
case of inverse regression, but perform better than without using error in predictor methods in the case
of classical regression followed by inversion.

Both inverse and classical regression involve the ratio of dependent random variables; therefore, the
assumed error distribution(s) will matter in parameter estimation and in uncertainty calculations. Mainly
for that reason, calibration using a single predictor is distinct from simple regression, and it has not been
thoroughly treated in the literature, nor in the ISO Guide to the Expression of Uncertainty in Measure-
ments (GUM). Our refined approach is based on simulation, because we illustrate that analytical

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/apradiso

Applied Radiation and Isotopes

http://dx.doi.org/10.1016/j.apradiso.2015.11.014
0969-8043/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: t.burr@iaea.org (T. Burr).

Applied Radiation and Isotopes 108 (2016) 49–57

www.sciencedirect.com/science/journal/09698043
www.elsevier.com/locate/apradiso
http://dx.doi.org/10.1016/j.apradiso.2015.11.014
http://dx.doi.org/10.1016/j.apradiso.2015.11.014
http://dx.doi.org/10.1016/j.apradiso.2015.11.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apradiso.2015.11.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apradiso.2015.11.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apradiso.2015.11.014&domain=pdf
mailto:t.burr@iaea.org
http://dx.doi.org/10.1016/j.apradiso.2015.11.014


approximations are not adequate when there are, for example, 10 or fewer calibration measurements,
which is common in calibration applications, each consisting of measured responses from known
quantities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

No measurement method is complete without an estimate of
its uncertainty. Uncertainty arises from errors of various types,
such as random and systematic errors, and can be quantified by
the variance of each known error type. In the bottom-up error
variance estimation considered here, the measurement method is
calibrated (as is typically required). Several guides for quantifying
and expressing uncertainty in measurement are available, such as
the GUM (JCGM 2008), but none gives numerical details regarding
method calibration. Literature on the function fitting using least
squares estimation provides analytical approximations needed in
calibration applications, but little is known about their adequacy,
particularly in small training sets consisting of, for example, 10 or
fewer measured responses from known quantities (Tellinghuisen,
2000). Calibration is assumed to be performed using “classical
forward regression followed by an inverse,” in which one fits a
response, such as item mass, as a function of a predictor, such as a
count rate, and then inverts the fitted model to estimate the test
item mass. Alternatively, we also consider that calibration can
consist of “inverse regression,” in which item mass is fit as a
function of a predictor (Krutchoff 1967, 1969; Parker et al., 2010;
Tellinghuisen, 2000).

In order to predict the variance in the errors in estimating test
item masses using a bottom-up approach, calibration information,
such as the number of calibration items, and the error variances in
the response values can be used along with least squares regres-
sion theory; if there is non-negligible error variance in the pre-
dictors, then an approach that allows for errors in the predictors is
required. We use an example in Section 7 to illustrate that avail-
able approximations for errors in predictors models are not suffi-
ciently accurate for our goals; therefore, simulation is needed to
assess calibration performance (Seber and Wild, 2003; Tell-
inghuisen, 2010).

If the same measurement method is used in a measurement
comparison exercise and the method has been calibrated by La-
boratory 1 and also by Laboratory 2, we can compare measure-
ments of test items by both laboratories using both a top-down
and bottom-up approach. In sample-exchange exercises, the top-
down approach uncertainty is usually larger than predicted by the
bottom-up approach. A recent paper provided a statistical partial
explanation of this experience, dealing with the fact that the
bottom-up approach usually requires approximate uncertainty
quantification methods (Burr et al., 2014). We recognize that
analytical chemists sometimes reserve the expression “top-down”
for a particular empirical UQ estimation that relies on reproduci-
bility studies involving multiple laboratories measuring the same
or similar items and the objective of the experiment is to estimate
the reproducibility standard deviation (ISO 21748). To clarify, we
use “top-down” as a synonym for empirical, without specifying,
except in particular examples, that we consider exactly what
sources of the measurement error are allowed to vary. The purpose
of this paper is to refine the bottom-up uncertainty estimate by
using calibration information so that if there are no unknown er-
ror sources, the refined bottom-up uncertainty estimate can be
brought in agreement with the top-down uncertainty estimate.
Then, in practice, if the top-down uncertainty estimate is larger
than the refined bottom-up uncertainty estimate, the explanation

is that there must be omitted sources of error beyond those pre-
dicted from calibration uncertainty. In non-destructive assay,
item-specific deviations from calibration items and/or model is an
example of such omitted error sources (item-specific deviations
are beyond our scope here, but see Burr et al. (2005, 2015)). This
paper develops a refined bottom-up uncertainty approach for four
cases of simple linear calibration: (1) inverse regression with
negligible error in predictors (EIP), (2) inverse regression with
non-negligible EIP, (3) classical regression with negligible EIP, and
(4) classical regression with non-negligible EIP. Our context is ca-
libration, and to describe the four calibration options, we refer to
(1) and (2) as inverse regression, and to (3) and (4) as classical
regression. Previous papers that ignore EIP have shown a tendency
for inverse regression to have lower error variance than classical
regression followed by inversion. This paper supports that ten-
dency both with and without EIP. Also, the paper shows that ca-
libration parameter estimates using EIP methods perform worse
than those without using EIP methods in the case of inverse re-
gression, but perform better than the estimates without using EIP
methods in the case of classical regression followed by inversion.

Both inverse and classical regression involve the ratio of de-
pendent random variables; therefore, the assumed error dis-
tribution(s) will matter in parameter estimation and in uncertainty
calculations. Mainly for that reason, calibration using a single
predictor is distinct from simple regression, and it has not been
thoroughly treated in the literature, nor in the GUM. Our refined
approach is based on simulation, because we illustrate that ana-
lytical approximations are not adequate when there are, for ex-
ample, 10 or fewer measured responses from known quantities
(which is typically the case, for example, in non-destructive assay
calibration applications because reference standards are expensive).

This paper is organized as follows. Section 2 gives background
and describes our main example, gamma spectroscopy applying
the enrichment meter principle. Section 3 describes regression
assumptions, theory, and current practice in the context of cali-
bration. Section 4 describes calibration and why standard regres-
sion theory is not fully adequate for calibration. Section 5 describes
the relevant portions of the GUM. Section 6 describes measure-
ment comparison data examples from the safeguards data eva-
luation section of the International Atomic Energy Agency (IAEA).
Section 7 presents the four cases for which we develop a refined
bottom-up uncertainty approach for simple linear calibration:
(1) inverse regression with negligible error in predictors, (2) in-
verse regression with non-negligible error in predictors, (3) clas-
sical regression with negligible error in predictors, and (4) classical
regression with non-negligible errors in predictors. Section 8 il-
lustrates how simulation can be used to estimate variance com-
ponents in a measurement error model suitable for measurement
comparison data evaluation. Section 9 is a summary.

2. Background

Most assay methods rely on some type of calibration. Physics
suggests that some assay methods are almost absolute (such as
high-resolution gamma spectroscopy where radiation transport
techniques can estimate peak efficiencies), and, in theory, would
not require calibration; in practice, some of the physics
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