FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

Review

Clinical applications of Gallium-68

Sangeeta Ray Banerjee, Martin G. Pomper*

Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA

HIGHLIGHTS

- ► A summary of the emerging clinical uses of ⁶⁸Ga-based radiopharmaceuticals is provided.
- ▶ ⁶⁸Ga-PET may prove as or more clinically robust than the corresponding ¹⁸F-labeled agents.
- ▶ ⁶⁸Ga-radiopeptides were studied for targeting of somatostatin receptors subtypes.
- ► ⁶⁸Ga-DOTATOC, ⁶⁸Ga-DOTATATE, ⁶⁸Ga-DOTANOC, are currently in clinical trials.

ARTICLE INFO

Available online 20 February 2013

Keywords: PET Radiopeptides Somatostatin receptor Neuroendocrine tumor Clinical trials

ABSTRACT

Gallium-68 is a positron-emitting radioisotope that is produced from a 68 Ge/ 68 Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. 68 Ga-DOTATOC, 8 Ga-DOTATATE, 68 Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with 68 Ga over the past few years around the world, including within the United States. An estimated $\sim 10,000$ scans are being performed yearly in Europe at about 100 centers utilizing 68 Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied 68 Ga-labeled imaging agents used in nuclear medicine.

© 2013 Elsevier Ltd. All rights reserved.

Contents

 68Ga-Labeled PET radiopharmaceuticals 68Ga-essential compounds in clinical studies 7arget-specific 68Ga-based radiopharmaceuticals in clinical studies 85TR-based 68Ga-PET imaging agents 92.2. Other 68Ga-labeled imaging agents in clinical trials 	2
2.2. Target-specific ⁶⁸ Ga-based radiopharmaceuticals in clinical studies	3
2.2. Target-specific ⁶⁸ Ga-based radiopharmaceuticals in clinical studies	4
2.2.2. Other ⁶⁸ Ga-labeled imaging agents in clinical trials	
	4
	8
2.3. ⁶⁸ Ga-labeled imaging agents for therapeutic monitoring	9
2.4. Cost advantage of ⁶⁸ Ga-based agents	10
2.5. Caveats to imaging with ⁶⁸ Ga-based SSTR-targeted agents	11
3. Summary and conclusion	11
Acknowledgments	
References	11

...

1. Introduction

Gallium-68 is one of the earliest of the positron-emitting radionuclides to have been applied to clinical medicine, dating back to the

^{*}Correspondence to: Johns Hopkins Medical School, 1550 Orleans Street, 492 CRB II, Baltimore, MD 21231, USA. Tel.: +1 410 955 2789; fax: +1 443 817 0990. E-mail address: mpomper@jhmi.edu (M.G. Pomper).

early 1960s (Anger and Gottschalk, 1963), long before [18F]-fluorodeoxyglucose (FDG) (Ido T et al., 1978). Because of concurrent advances in positron emission tomography (PET) and radiosynthetic accessibility of ⁶⁸Ga-labeled agents using standard methods of the day, Gottschalk et al., 1966 began to apply ⁶⁸Ga clinically, initially to central nervous system processes (Anger and Gottschalk, 1963: Schaer et al., 1966). By the late 1970s, however, ⁶⁸Ga-based PET imaging was sidetracked in favor of new agents coming online that utilized ^{99m}Tc for single photon emission computed tomography (SPECT) and ¹⁸F for PET. One reason for this temporary delay in the development of ⁶⁸Ga-PET could have been because early ⁶⁸Gagenerators provided ⁶⁸Ga in complex with ethylenediaminetetraacetic acid (EDTA) such that destruction of the complex was necessary for preparation of the radiopharmaceuticals. That made radiolabeling tedious, time-consuming, and accomplished with overall poor yield. At that time ⁶⁸Ga-generators utilized ⁶⁸Ga(III) in hydrated form until next-generation ⁶⁸Ge/⁶⁸Ga generators became commercially available, which enabled convenient elution of cationic ⁶⁸Ga with dilute acid (0.1 M HCl). The development of these generators was recently reviewed in detail by Maecke et al. (Fani et al., 2008). Asti et al. (Asti et al., 2008) described an effective purification of the ⁶⁸Ge/⁶⁸Ga eluate [a crucial labeling step (Zhernosekov et al., 2007)], which was applied to the production of ⁶⁸Ga-1,4,7,10-tetra-azacyclododecane-1,4,7,10tetraacetic acid-D-Phe1-Tyr3-octreotide, (68Ga-DOTATOC), the most widely used ⁶⁸Ga-based PET radiopharmaceutical (Prata, 2012). This purification technique has also been used to optimize ⁶⁸Ga-labeling methods for DOTA-derivatized peptides and is suitable for clinical use. Decristoforo et al. described a fully automated synthesis for ⁶⁸Galabeled peptides with high, reproducible yields (Decristoforo et al., 2007). Currently several ⁶⁸Ge/⁶⁸Ga generator systems are commercially available from distributors in Russia, Europe, United States and other countries. With the availability and reliability of commercial generator systems and effective and convenient purification steps, ⁶⁸Ga has the potential to become as useful for PET as ^{99m}Tc has proved for SPECT imaging. There are many examples of the use of ⁶⁸Ga-labeled radiotracers, including many that currently rely on ^{99m}Tc clinically, such as for myocardial perfusion and function, blood flow, renal function and liver function (Baum and Rosch, 2011; Fani et al., 2008; Roesch and Riss, 2010; Rosch and Baum, 2011; Wadas et al., 2010). ⁶⁸Ga-based radiopeptides have been tested pre-clinically for the targeting of somatostatin (Froidevaux et al., 1999), bombesin (Schuhmacher et al., 2005b) and melanocortin 1 receptors (Froidevaux et al., 2004). Because their pharmacokinetics are wellmatched to the short physical half-life of the isotope, ⁶⁸Ga-based peptides are increasingly recognized as a new class of radiopharmaceuticals, showing very fast blood clearance and fast target localization. The short physical half-life of 68 Ga ($t_{1/2}$ =68 min) enables improved dosimetry and repeat imaging, making these agents ideal for clinical use. However, although of demonstrated utility in preclinical and limited clinical studies, no ⁶⁸Ga-labeled pharmaceutical has been approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA) and no FDA- or EMA-approved ⁶⁸Ge/⁶⁸Ga generator is available as of this writing (Ambrosini et al., 2011a). There are two sites in the US that are currently implementing ⁶⁸Ga-DOTATOC, one at Vanderbilt University, under an Investigational New Drug application, where a Phase I trial has recently been completed, and the other at the University of Iowa, under approval by the local Radioactive Drug Research Committee (Graham and Menda, 2011).

2. ⁶⁸Ga-Labeled PET radiopharmaceuticals

There are many practical and economic advantages to ⁶⁸Ga. Gallium-68 is a generator-eluted, short-lived radionuclide decaying 89% through positron emission (maximum energy of 1.92 MeV, mean

0.89 MeV). The long physical $t_{1/2}$ of the parent radionuclide (270.8 d) allows the use of the generator for up to one year, obviating the need for a cyclotron on site, providing cost-effectiveness as well as convenience. However, energy of the emitted positron from ⁶⁸Ga is higher than that of ¹⁸F (maximum energy=0.63 MeV, mean-=0.25 MeV), the most widely used PET isotope, which can potentially lead to lower resolution (Sanchez-Crespo et al., 2004). Despite the availability of ⁶⁸Ga for more than 30 years, recognition of its uses for clinical PET are only now emerging and only now is it being applied to pre-clinical models of human disease (Baneriee et al., 2010). Radiometals for the clinic can be used as the chelated metal itself l"metal essential radiopharmaceutical," following the definition of Jurrison et al. for ^{99m}Tc-based radiopharmaceuticals (Jurisson and Lydon, 1999)], the pharmacokinetics of which rely entirely on the physical and chemical properties of the agent, e.g. ⁶⁸Ga-EDTA and ⁶⁸Ga-diethylene triamine pentaacetic acid (⁶⁸Ga-DTPA). Similarly, "target-specific gallium radiopharmaceuticals" can be defined as a class of radiopharmaceuticals for which the targeting moiety (e.g., antibody, peptide, hormone) has been radiolabeled with ⁶⁸Ga and can be targeted to a specific, biologically accessible protein such as a receptor. In the case of ⁶⁸Ga the most prevalent such compounds to date target the somatostatin receptor (SSTR). Target-specific ⁶⁸Gabased agents are mostly generated using a bifunctional chelating approach (BFCA). This approach requires the chelator to bind the metal in complex on one end with high affinity, enabling stability in vivo, with a targeting or affinity agent on the other end that assures concentration in the tissue of interest. Several suitable bifunctional chelators have been developed for complexation of ⁶⁸Ga and have been coupled to biologically active targeting agents. These include agents that contain 1,4,7-triazacyclononane-N,N',N"-triacetic acid (NOTA), DOTA, DTPA and desferrioxamine B (DFO), Although not used in clinical trials to date, mono- and multimeric phosphinic acid derivatives of NOTA, a new class of NOTA-based chelating agents developed by Notni et al., are receiving considerable attention (Notni et al., 2010, 2012a, 2012b; Simecek et al., 2012a, 2012b). The novel bifunctional triazacyclononane triphosphinic acid chelator (TRAP) ligands have many desirable properties required for a chelating agent for ⁶⁸Ga, including fast and selective complex formation, high complex stability, ability to be conjugated and convenient synthesis (Notni et al., 2010, 2012a, 2012b; Simecek et al., 2012a, 2012b). The TRAP-peptide could be radiolabeled with ⁶⁸Ga excellent reproducibility and > 95% radiochemical yield in specific activities of 10 to 20 times higher than NOTA and DOTA peptides, respectively (Notni et al., 2012b).

Targeting agents are coupled via the BFCA leveraging standard intermediates that enable covalent attachment including active esters, isothiocyanates, maleimides, hydrazides, or haloamides (Liu and Edwards, 1999). DOTATOC (Hofmann et al., 2001: Kowalski et al., 2003), DOTA-D-Phe1-Tyr3-Thr8-octreotate (68Ga-DOTATATE) (Antunes et al., 2007; Reubi et al., 2000a), ⁶⁸Ga-DOTA-Phe¹-Nal³-octreotide (DOTANOC) (Wild et al., 2005, 2003), ⁶⁸Ga-DOTA-bombesin (Schuhmacher et al., 2005b), ⁶⁸Ga-NOTA-RGD (Jeong et al., 2008), ⁶⁸Ga-DOTA-albumin (Hoffend et al., 2005; Mier et al., 2005), ⁶⁸Ga-DOTA-human epidermal growth factor (hEGF) (Baum et al., 2010), ⁶⁸Ga-phosphonate triazacyclononane [NOPO)]-RGDfK and [68Ga]-NOPO-NOC(Simecek et al., 2012b), are examples of such agents. Recently, a smart strategy employing copper-free click chemistry has been reported for sitespecific coupling of bioactive molecules with chelating agents for radiolabeling with ⁶⁸Ga (Baumhover et al., 2011; Schultz et al., 2010). Fast and efficient coupling has been possible using an azide-modified bioactive function and a reactive cyclooctyne group attached to a chelating agent such as DOTA and NOTA.

With that background in mind, this review will focus strictly on clinical application of ⁶⁸Ga-based radiopharmaceuticals. Excellent recent and general reviews on the development of

Download English Version:

https://daneshyari.com/en/article/1877645

Download Persian Version:

https://daneshyari.com/article/1877645

<u>Daneshyari.com</u>