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The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate
complex physical systems. It is based on the generation of pseudo-random number sequences by
numerical algorithms called random generators. In this work we assessed the suitability of different
well-known random number generators for the simulation of gamma-ray spectrometry systems during
efficiency calibrations. The assessment was carried out in two stages. The generators considered
(Delphi’s linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array,
and non-periodic logistic map based generator) were first evaluated with different statistical empirical
tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of
tests. In a second step, an application-specific test was conducted by implementing the generators in
our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were
performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli
geometry, with gamma-rays between 59 and 1800keV. For the Non-periodic Logistic Map based
generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of
the efficiency values obtained with this generator. The results of the application-specific assessment
and the statistical performance of the other algorithms studied indicate their suitability for the Monte

Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Gamma-ray spectrometry has become one of the most widely
used non-destructive procedures to quantify the activity of
radionuclides. The analysis requires the knowledge of the peak
efficiency at each photon energy, which can be determined by
performing an efficiency calibration using standard samples with
the same geometrical dimensions, density, and chemical compo-
sition as the sample of interest. These conditions often cannot be
met because it is difficult to find adequate standards for all
energies of interest and radionuclides with appropriate half-lives.
Therefore, the use of interpolation procedures and a continuous
renewal of spent standards are inherent shortcomings of this
approach. Experimental calibrations are also time-consuming,
especially when many different matrices or sample-detector
geometries have to be measured. In order to overcome these
difficulties, a powerful tool is the Monte Carlo simulation, which
allows the peak efficiencies to be calculated taking into account
the detailed characteristics of detectors and samples.
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The Monte Carlo method is based on the generation of pseudo-
random numbers by numerical algorithms called random number
generators (RNGs). The ideal RNG does not exist, because no one
generator is better than others for all purposes. The “quality” of a
given generator is closely related to the problem to be solved.
Therefore, despite the diversity of available statistical tests, it is
also desirable to evaluate each random number generator
according to the specific application it will be used for.

In this paper we describe the results of the studies carried out
to assess the suitability of some of the most common RNGs for
Monte Carlo simulation of gamma-ray spectrometry systems
during efficiency calibrations. In Section 2 we provide a brief
description of the RNGs considered. Section 3 summarizes the
statistical empirical tests used for the preliminary assessment of
the RNGs, while its application-specific assessment is described in
Section 4. The main conclusions are provided in Section 5.

2. Random number generators considered
Discussion about which is the more appropriate term, “ran-

dom number generator” or “pseudo-random number generator”
is beyond the scope of this work, so that, for simplicity the term
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“random number generator” will be used throughout. Although
there are many random number generators that in principle could
be used in a study of this type, we will focus on some of the
simpler, faster, and widely known generators that have already
been applied in stochastic simulations:

(a) Linear congruential generator (LC) (Knuth, 1998), provided

with the Borland Delphi package. The sequence of random
numbers is obtained by setting:
Xpn41 =(a-xp+c)mod m(n > 0) M
with the multiplier a=134775 813, the increment c=1, and
modulus m=232. The period of this generator is
23212429 x 10°.

(b) Mersenne twister generator (MT), implemented by us (Vergara

Gil, 2008). The algorithm is a twisted generalized feedback

shift register of rational normal form, with state bit reflection

and tempering (Matsumoto and Nishimura, 1998; Matsumo-

to, 2002). The period is ~2'99%7 1.

Multiply with carry generator (MWC) (Marsaglia, 2003), with

the general algorithm:

(c

~

Np=(@-Ny_1+cy_y)modm;n>1 2)

Ch= |:a . Nn—1 +Cn—1:| (3)

m
This generator was implemented by us according to the work
of Debord (2008), by combining two 16-bit MWC generators
with multipliers a;=18 000 and a,=30903, respectively, and
modulus m=2"° to form 32-bit numbers. The period of this
generator is (a; - 2'°—1)(a; - 2'°—1)~ 6 x 10'”. The algorithm
used poses the problem of an additional requirement
regarding the proper selection of the sequence seeds.

(d) XorShift generator (XorS) (Marsaglia, 2003), with a period of
2321~ 4.29 x 10° and sequence:

N xor (N shl 1), N xor (N shr 3), N xor (N shl 10) 4)

(e) Universal virtual array generator (UVA), implemented by us
according to Debord (2008). This generator uses the content
of the computer’s random access memory to generate random
sequences. This generator does not allow the repetition of
random sequences and has no period.

(f) Non-periodic logistic map based generator (LM), implemented
by us according to Barberis (2007) but without discarding the
first 300 numbers in every calculation, as it was suggested by
the author to improve the independence of the terms in the
sequence, although with an obvious cost in time. This
generator is based on the recurrence:

Xn=T X1 - (1=X_1)(T=4) 5)

with the substitution y, = 2 /% - arcsin,/X,, where x,, and y,, are
real numbers in the interval (0,1). The lack of periodicity was
confirmed in Barberis (2007) up to 10'®> numbers. Because of
its simplicity, this generator seemed to be promising for our
purposes.

Amongst the generators studied, the LC generator is one of the
oldest and more used in Monte Carlo codes for radiation
transport. The RNG implemented in the well known Monte Carlo
code MCNP is based on a linear congruential scheme (Brown and
Nagaya, 2002). Additionally, the subroutine RANECU, written by
James (1990) from the algorithm proposed by L’Ecuyer (1988) and
implemented in the Monte Carlo packages PENELOPE (Salvat
et al., 2006) and GEANT4 (Geant4 Home Page), is the combination
of two LC generators. The MT generator is another of the RNGs
included in the GEANT4 toolkit.

3. Statistical empirical tests

The RNGs were first assessed with different basic statistical
empirical tests according to Knuth (1998), which evaluate the
moments, the uniformity, and the independence of terms in the
sequences. In a second step, each RNG was checked with the
DIEHARD battery of tests (Marsaglia, 1995), which contains 15
statistical tests covering among others independence between
consecutive numbers, independence between bits and between
sequences of bits, and uniformity in several dimensions. The
DIEHARD battery of test is also included in the tests suite called
TESTUO1 (L’Ecuyer and Simard, 2009), which includes more
sophisticated test for parallelization problems or larger random
number sequences.

The results of statistical tests were evaluated using the
student, chi-square, and Kolmogorov-Smirnov tests.

The random numbers obtained with the LM generator showed
non-independence in the most significant bits. Therefore, this
generator failed to pass some of the basic tests such as “the sum of
dice” and “the graphical correlation” (Knuth, 1998). Regarding the
“sum of dice” test, if we consider the experiment of throwing two
dice (each of which is assumed to yield the values 1, 2, 3,4, 5, or 6
with equal probability) the sum of dice must be an integer
number in the interval [2, 12], with 36 different combinations. For
each RNG, we simulated n throws (n=100000), using 2n random
numbers. The statistic V was then calculated according to

12 2
(Ye—n-py)

V= E —_— 6

k=2 - Pk ©

with Y, being the observed number of times in which the sum of
dice equals k {k e N,2 < k < 12} and py, the probability of obtaining
the value k. V should follow the behavior of a stochastic variable
with a y? distribution (for 10 degrees of freedom) if the dice were
“true”, i.e., if the numbers obtained in the sequence were really
independent. For each RNG the experiment was carried out 10
times and the corresponding probability p,.(x <V), _qo for each
value of V was determined. The Kolmogorov-Smirnov test was
finally applied to the 10 values of p,.(x < V), _ 1 obtained for each
RNG, calculating the pertinent positive (KS+) and negative (KS—)
maximum deviations from a uniform distribution in the interval
(0,1). Table 1 presents the probability values Pgs(x <KS+) and
Pys(x < KS—) given for the differences KS+ and KS—, respectively,
by assuming 10 degrees of freedom.

This “sum of dice” test was repeated by considering 3, 4, 5 and
6 dice, and the results were similar to those given in Table 1. As
can be seen in that table, the differences KS+ and yKS — for the LM
generator are much greater than those expected if the statistics V
followed a %2 distribution. As a consequence of this non-
independence between consecutive elements in the sequence
obtained with the LM generator, the “graphical correlation” test
does not show points uniformly distributed in the area of interest
((0,1) x (0,1)), but a well-defined pattern, as shown in Fig. 1. On
the contrary, the application of the “graphical correlation” test to

Table 1
Results of the Kolmogorov-Smirnov test.

RNG Pis(x < KS+) Pys(x <KS—)
LC 0.377 0.727
XorS 0.647 0.276
MWC 0.673 0.307
MT 0.417 0.321
UVA 0.673 0.307
LM 1.000 1.000
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