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New exact solution for Rayleigh–Stokes problem of Maxwell
fluid in a porous medium and rotating frame

1. Introduction

Stokes’ first problem for the flat plate originated in 1851, and is
also known as the Rayleigh–Stokes problem. This problem for non-
Newtonian fluid has received much attention due to its practical
applications in industry, geophysics, chemical and petroleum engi-
neering [1]. Some investigations are notably important in indus-
tries related to paper, food stuff, personal care products, textile
coating and suspension solutions.

For the Rayleigh–Stokes problem, we shall consider an infinitely
long flat plate above which a fluid exists. Initially, both the fluid and
plate are at rest and suddenly, the plate is jerked into its plane with
a constant velocity. For Newtonian fluids and by using a simple
transformation, an elegant solution was obtained for this problem
by Zierep [2] and Soundalegkar [3]. More recently, Tan and
Masuoka [4,5], Fetecau and Corina Fetecau [6], Zierep and Fetecau
[7,8], Hayat et al. [9–11], Fetecau and Corina Fetecau [12] and
Fetecau et al. [13] have studied the problem for different types of
non-Newtonian fluids.

The non-Newtonian fluids have been mainly classified under
the differential, rate and integral types. The Maxwell fluids are
the subclass of non-Newtonian fluids and are the simplest subclass
of rate type fluids which take the relaxation phenomena into con-
sideration. It was employed to study various problems due to their
relatively simple structure. Moreover, one can reasonably hope to
obtain exact solutions from this type of Maxwell fluid. This moti-
vates us to choose the Maxwell model in this study. The exact solu-
tions are important as these provide standard for checking the
accuracies of many approximate solutions which can be numerical
or empirical. They can also be used as tests for verifying numerical
schemes that are developed for studying more complex flow
problems.

Exact solution of the problem is given by using the Fourier sine
and Laplace transforms method. This method has already been
successfully applied by various workers, for example, Fetecau et
al. [13,14] and Christov and Jordan [15]. Justifiably, the traditional
Fourier sine and Laplace transforms method has the following
important features. It is a very powerful technique for solving
these kinds of problems, which literally transforms the original lin-
ear differential equation into an elementary algebraic expression.
More importantly, the transformation avoids the omission of a
critical term from the resulting subsidiary equation.

The objective of the present work is to establish a new exact
solution for a magnetohydrodynamic (MHD) Maxwell fluid in a
porous medium and rotating frame. Here we examine the rotating
and MHD flow over a suddenly moved flat plate. Constitutive equa-

tions of a Maxwell fluid are used. Modified Darcy’s law has been
utilized. The solution to the resulting problem is generated by
Fourier sine and Laplace transforms technique. The graphs of the
velocity profiles are plotted in order to illustrate the variations of
embedded flow parameters with respect to the velocity profiles.
Interestingly, the results of many existing situations (see
[12,16,17]) are shown as the special cases of the present study.

2. Formulation of the problem

We choose a Cartesian coordinate system by considering an
infinite plate at z ¼ 0. An incompressible fluid which occupies
the porous space is conducting electrically by the exertion of an
applied magnetic field B0, which is parallel to the z� axis. The elec-
tric field is not taken into consideration and the magnetic Reynolds
number is small and such that the induced magnetic field is not ac-
counted for. The Lorentz force J � B0 under these conditions is
equal to �rB2

0V . Here J is the current density, V is the velocity field,
r is the electrical conductivity of fluid. Both plate and fluid possess
solid body rotation with a uniform angular velocity X about the
z-axis.

The governing equations are

div V ¼ 0; ð1Þ

q
@V
@t
þ ðV � rÞV þ 2X� V þX� ðX� rÞ

� �
¼ �rpþ div S� rB2

0V þ R; ð2Þ

where q is the fluid density, r is a radial vector with r2 ¼ x2 þ y2, p
is the pressure, S is the extra stress tensor and R is Darcy’s
resistance.

The constitutive relationships for Maxwell fluid are

T ¼ �pI þ S;

Sþ k
dS
dt
� LS� SLT

� �
¼ lA; ð3Þ

where T is the Cauchy stress tensor, I is the identity tensor, L is
the velocity gradient, A ¼ Lþ LT is the first Rivlin–Eriksen tensor,
k the relaxation and l is the dynamic viscosity of fluid and d

dt indi-
cates the material derivative.

According to Tan and Masuka [4], Darcy’s resistance in an Old-
royd-B fluid satisfying the following expression:

1þ k
@

@t

� �
R ¼ �l/

k
1þ kr

@

@t

� �
V ; ð4Þ

where kr is the retardation time, / is the porosity and k is the per-
meability of the porous medium. For Maxwell fluid kr ¼ 0 and
hence

1þ k
@

@t

� �
R ¼ �l/

k
V : ð5Þ
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We seek a velocity field of the form

V ¼ ðuðz; tÞ; tðz; tÞ;wðz; tÞÞ; ð6Þ

which together with Eq. (1) yield w ¼ 0. By using the Eqs. (2), (3),
and (6) we arrive at

q
@u
@t
� 2Xt

� �
¼ � @p̂

@x
þ @Sxz

@z
� rB2

0uþ Rx; ð7Þ

q
@t
@t
þ 2Xu

� �
¼ � @p̂

@y
þ @Sxz

@z
� rB2

0tþ Ry; ð8Þ

where

1þ k
@

@t

� �
Sxz ¼ l @u

@z
; ð9Þ

1þ k
@

@t

� �
Syz ¼ l @t

@z
: ð10Þ

The Rx and Ry are x- and y-components of Darcy’s resistance R, and
z-component of Eq. (2) indicates that p̂–p̂ðzÞ and the modified
pressure p̂ is p̂ ¼ p� q

2 X2r2.
Invoking Eqs. (5), (9), and (10) in Eqs. (7) and (8) and then

neglecting the pressure gradient we now obtain the coupled
governing equations as

q 1þ k
@

@t

� �
@u
@t
� 2Xt

� �
þ rB2

0 1þ k
@

@t

� �
u ¼ l @

2u
@z2 �

l/
k

u; ð11Þ

q 1þ k
@

@t

� �
@t
@t
þ 2Xu

� �
þ rB2

0 1þ k
@

@t

� �
t ¼ l @

2t
@z2 �

l/
k

t; ð12Þ

where the appropriate initial and boundary conditions are

u ¼ t ¼ 0 at t ¼ 0; z > 0 ð13Þ
uð0; tÞ ¼ U; tð0; tÞ ¼ 0 for t > 0; ð14Þ

u;
@u
@z
; t;

@t
@z
! 0 as z!1; t > 0: ð15Þ

3. Solution of the problem

Letting F ¼ uþ it in Eqs. (11) and (12), the problem is reduced
by combining these two equations as

1þ k
@

@t

� �
@F
@t
þ 2iXþ rB2

0

q

 !
1þ k

@

@t

� �
F þ m/

k
F ¼ m

@2F
@z2 ; ð16Þ

where m is the kinematic viscosity. The appropriate boundary and
initial conditions are

Fð0; tÞ ¼ U; t > 0; ð17Þ

Fðz; 0Þ ¼ @Fðz;0Þ
@t

¼ 0; z > 0;

Fðz; tÞ ¼ @Fðz; tÞ
@z

! 0 as z!1; t > 0:

In order to solve the linear partial differential equation (16) with
initial and boundary conditions (17), we shall use the Fourier sine
and Laplace transforms technique [13–15]. For a greater general-
ity, we consider the boundary condition Fð0; tÞ ¼ UðtÞ with
Uð0Þ ¼ 0 and apply the Fourier sine transform with respect to z.

We thus obtain the result as follows:

k
@2Fsðg; tÞ

@t2 þ ½1þ kc� @Fsðg; tÞ
@t

þ m g2 þ /
k

� �
þ c

� �
Fsðg; tÞ

¼ g
ffiffiffiffi
2
p

r
mUðtÞ; t > 0; ð18Þ

where c ¼ 2iXþ rB2
0

q and the Fourier sine transform Fsðg; tÞ of
Fðz; tÞ has to satisfy the following conditions:

Fsðg;0Þ ¼
@Fsðg;0Þ

@t
¼ 0; g > 0: ð19Þ

Applying the Laplace transform to Eq. (18) and using the initial
condition (19) we found that

�Fsðg; qÞ ¼ g
ffiffiffiffi
2
p

r
m

kq2 þ ½1þ kc�qþ mg2 þ m /
k þ c

� � �UðqÞ; ð20Þ

where q is the transformed parameter while �Fsðg; qÞ and �UðqÞ are
the Laplace transform of Fsðg; tÞ and UðtÞ, respectively. Choosing
UðtÞ ¼ UHðtÞ; where HðtÞ is Heaviside unit step function and U
is the constant; we get the velocity field corresponding to the
Rayleigh–Stokes problem.

In the case �UðqÞ ¼ U
q

Eq. (20) takes the form

�Fsðg; qÞ ¼
Ug
k

ffiffiffiffi
2
p

r
1
q

m
ðq� r1Þðq� r2Þ

� �
; ð21Þ

and

r1; r2 ¼
�½1þ kc� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ kc�2 � 4k mg2 þ m /

k þ c
	 
q

2k
:

Applying the inverse Laplace transform to (21), the solution can
be expressed as

Fsðg; tÞ ¼ U

ffiffiffiffi
2
p

r
g

g2 þ /
k þ c

m

	 
 1� r2er1t � r1er2t

r2 � r1

� �" #
; t > 0: ð22Þ

Inversion of Fourier sine transform in (22) then gives

Fðz; tÞ ¼ UHðtÞ e�
ffiffiffiffiffiffi
/
kþ

c
m

p	 

z � 2

p

Z 1

0

r2er1t � r1er2t

r2 � r1

� �
g sinðzgÞ
g2 þ /

k þ c
m

	 
 dg

" #
:

ð23Þ

The velocity field (23) is in different form from that of [10],
and obtained in another way. Of course, the velocity field (23)
is obtained in accordance with the same method used to gen-
erate the results in [13–15].

The above expression (23) for hydrodynamic fluid (i.e. B2
0 ¼ 0)

in a non-porous space (i.e. / ¼ 0) is given by

Fðz; tÞ ¼ UHðtÞ e�ð1þiÞ
ffiffi
X
m

p
z � 2

p

Z 1

0

r4er3t � r3er4t

r4 � r3

� �
g sinðzgÞ
g2 þ 2iX

m

	 
 dg

" #
;

ð24Þ

where

r3; r4 ¼
�½1þ 2ikX� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ 2ikX�2 � 4kðmg2 þ 2iXÞ

q
2k

: ð25Þ

Putting X ¼ 0 into Eqs. (24) and (25), we obtain

Fðz; tÞ ¼ UHðtÞ 1� 2
p

Z 1

0

r6er5t � r5er6t

r6 � r5

� �
g sinðzgÞ

g
dg

� �
; ð26Þ

where

r5; r6 ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4kmg2

p
2k

: ð27Þ

The velocity field Fðz; tÞ, given by Eq. (26), has been recently ob-
tained by Fetecau et al. [13, Eq. (23)].

The result (23) for a magnetohydrodynamic viscous fluid,
where k ¼ 0 in a porous space is

Fðz; tÞ ¼ UHðtÞ e�
ffiffiffiffiffiffi
/
kþ

c
m

p	 

z � 2

p

Z 1

0

ge� mg2þm/
kþcð Þt

g2 þ /
k þ c

m

	 
 sinðzgÞdg
" #

; ð28Þ
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