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a b s t r a c t

In this paper, we report new three level implicit super stable methods of order two in time and four in
space for the solution of hyperbolic damped wave equations in one, two and three space dimensions sub-
ject to given appropriate initial and Dirichlet boundary conditions. We use uniform grid points both in
time and space directions. Our methods behave like fourth order accurate, when grid size in time-direc-
tion is directly proportional to the square of grid size in space-direction. The proposed methods are super
stable. The resulting system of algebraic equations is solved by the Gauss elimination method. We discuss
new alternating direction implicit (ADI) methods for two and three dimensional problems. Numerical
results and the graphical representation of numerical solution are presented to illustrate the accuracy
of the proposed methods.

� 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

We consider the damped wave equation

utt þ 2aut ¼ a2uxx þ f ðx; tÞ; 0 < x < p; 0 < t < T ð1Þ

where ‘a’ is the propagation speed of the wave, ‘a’ is a small positive
damping constant. The right-hand side function f(x,t) is an arbitrary
external forcing function. For simplicity, we assume that the length
of the string is one and the constant a2 = 1. Mickens and Jordan [1,2]
have studied a new non-standard finite difference scheme for the
positive solution of damped wave equation. Mohanty et al. [3–12]
have developed high accuracy methods for the solution of multi-
dimensional nonlinear hyperbolic equations, in which, they have
shown that the schemes for linear hyperbolic equations are condi-
tionally stable. Later, Mohanty et al. [13–18] have discussed lower
order unconditionally stable schemes for the solution of multi-
dimensional Telegraphic equations. Although Eq. (1) is a particular
case of Telegraphic equation, the unknown parameters involved in
the schemes discussed in [13–18] are dependent on the grid sizes
and mesh ratio parameter. Other lower order methods for multi-
dimensional Telegraphic equations are discussed in the literature
[19–32]. In this paper, we discuss new three level implicit super sta-
ble methods of order two in time and four in space for the solution
of one, two and three space dimensional damped wave equation. In
next section, we derive the super stable method for one space
dimensional damped wave equation and discuss the stability

analysis. In this method, we use three uniform spatial grid points
at each time level. In Section 3, we discuss a new alternating direc-
tion implicit (ADI) super stable method, and the stability analysis
for two dimensional problems. In Section 4, we extend our tech-
nique, and present stability analysis and ADI super stable method
for three dimensional problems. In Section 5, we solve multidimen-
sional damped wave equation using the proposed methods and
compare the results with the results of other existing methods. Con-
cluding remarks are given in Section 6.

2. Super stable method for one dimensional damped wave
equation

For simplicity, we consider the damped wave equation

utt þ 2aut ¼ uxx þ f ðx; tÞ; a > 0 ð2Þ

over a region X = {(x, t)j0 < x < 1, t > 0}, with the initial conditions

uðx;0Þ ¼ a0ðxÞ; utðx;0Þ ¼ a1ðxÞ; 0 6 x 6 1; ð3Þ

and boundary conditions

uð0; tÞ ¼ b0ðtÞ; uð1; tÞ ¼ b1ðtÞ; t > 0: ð4Þ

We assume that a0(x), a1(x), and their derivatives are continu-
ous functions of x. For the numerical solution of the above initial
boundary value problem, we divide the interval [0,1] into (N + 1)
subintervals each of width h > 0, so that (N + 1)h = 1. Let s > 0 be
the step size in the time direction. The grid points are given by (xl,-
tj) = (lh, js); l = 0(1)N + 1, j = 1,2,3, . . .. Let Uj

l be the exact solution
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value of u(x,t) at the grid point (xl, tj) and uj
l be the approximate

value of Uj
l . Throughout the paper, we denote a = a2s2 and k = (s/

h) > 0 be the mesh ratio parameter.
Applying the method discussed in [3], a three level implicit

method of O(s4 + s2h2 + h4) for the differential equation (2) may
be written as
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Now, we discuss the stability of the scheme (5). The exact solution
value Uj

l satisfies
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We assume that there exists an error ej
l ¼ uj

l � Uj
l at the grid point

(xl,tj). Subtracting (6) from (5), we obtain the corresponding error
equation
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For stability, we put ej
l ¼ njeihl in the homogeneous part of the

error equation (7), we get the characteristic equation

Pn2 þ Qnþ R ¼ 0 ð8Þ

where
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Using the transformation n ¼ 1þz
1�z, the characteristic equation (8)

reduces to

ðP � Q þ RÞz2 þ 2ðP � RÞzþ ðP þ Q þ RÞ ¼ 0 ð9Þ

The necessary and sufficient condition for jnj < 1 is that

P þ Q þ R > 0; P � R > 0; P � Q þ R > 0:

Thus for stability, we must have the conditions
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The inequality (10) holds good, if max 2k2
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2
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, that is, 0 < k2 < 1. Thus the scheme (5) is stable, if

0 < k2 < 1.
In order to obtain a stable scheme with extended stability

range, we follow the ideas given by Chawla [33]. We may re-write
(5) in a modified form
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where c > 0 is a free parameter to be determined. Although the
additional term is of O(s4), it enables us to determine the values
of parameter c for which the method is super stable. For s / h2,
the method (11) behaves like a fourth order method. The exact
solution value Uj

l satisfies
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Subtracting (12) from (11), we obtain the error equation

1þ a
3

� �
d2

t e
j
l þ

ffiffiffi
a
p
ð2ltdtÞej

l þ
ffiffiffi
a
p

12
ð1� k2Þ d2

x 2ltdt
� �

ej
l � k2d2

xe
j
l

þ 1� k2

12
� ck2

 !
d2

xd
2
t e

j
l ¼ Oðs4 þ s4h2 þ s2h4Þ ð13Þ

For stability, we put ej
l ¼ njeihl in the homogeneous part of the

error equation (13), we get the characteristic equation
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Using the transformation n = (1 + z)/(1 � z), the characteristic
equation (14) reduces to

ðA� Bþ CÞz2 þ 2ðA� CÞzþ ðAþ Bþ CÞ ¼ 0 ð15Þ

The necessary and sufficient condition for jnj < 1 is that

Aþ Bþ C > 0; A� C > 0; A� Bþ C > 0 ð16Þ

Thus for stability, we must have the conditions

(i) Aþ Bþ C ¼ 4k2 sin2 h
2
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We can treat this separately.
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A method will be called superstable, if the period of stability
is (0,1).
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