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a b s t r a c t

Recurrence in the classical random walk is well known and described by the Pólya number. For quantum
walks, recurrence is similarly understood in terms of the probability of a localized quantum walker to
return to its origin. Under certain circumstances the quantum walker may also return to an arbitrary initial
quantum state in a finite number of steps. Quantum state revivals in quantum walks on cycles using coin
operators which are constant in time and uniform across the path have been described before but only
incompletely. In this paper we find the general conditions for which full-quantum state revival will occur.
� 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

A quantum walk is the quantum-mechanical complement to
the classical random walk. In a quantum walk the ‘‘walker’’ evolves
according to a unitary transformation between initial and final
states, either in discrete steps of time or by a continuous-time evo-
lution under a Hamiltonian operator. The discrete-time quantum
walk was first described by Aharonov et al. [1] where it was noted
that due to quantum interference effects the average path length of
the quantum walk can be longer than the maximum allowed path
length in a classical random walk. To take advantage of this phe-
nomenon the quantum walk has since been applied to the develop-
ment of quantum search algorithms [2–5] in terms of both the
discrete-time [6,7] and continuous-time [8,9] quantum walks. Both
the discrete and continuous quantum walks have also been shown
to be universal for quantum computation [10–12].

An important problem in the study of classical random walks is
determining the probability of the walker returning to its origin.
This is referred to as recurrence and is determined by the random
walk’s Pólya number [13–15]. Recurrence in a quantum walk is
similarly defined as the probability after N steps for observing
the quantum walker at its point of origin [16–18]. Recurrence in
continuous-time quantum walks has also been studied [19].

The criterion of the quantum walker returning to its initial
quantum state or quantum state revival is a more stringent
requirement. Previous work has looked at full revivals in quantum
walks in a 2 dimensional graph [20]. A similar problem looking at
quantum diffusion on a cyclic lattice is also treated [21]. This paper
is concerned with the conditions under which a quantum walker in

an arbitrary quantum state on a k-cycle with k unitary transforma-
tion sites, will return to its initial quantum state in N steps. Our
assumptions are that each of the unitary transformations be time
independent and equal. Quantum state revivals occur when the
k-cycle operator, Uk q;a; bð Þ satisfies UN

k ¼ I2k where I2k is the
2k� 2k identity matrix.

2. Discrete quantum walks in one dimension

The necessary elements of the classical random walk are a
walker and a random coin toss mechanism. For each toss of the coin
the walker takes a step to the right if ‘‘heads’’ or a step to the left if
‘‘tails’’. An important distinction of the quantum walk is the quan-
tum property of superposition, in this case a superposition of the
amplitudes corresponding to a step to the left and a step to the right.
Thus the quantum counterpart to the classical random walk
involves a quantum walker with a two state coin space and a unitary
coin operator. The coin operator can be continuously tuned in both
how much it rotates the original state and its relative phase change.
The essential quantum behavior is typically modeled in terms of a
quantum two state system such as a spin 1

2 particle for the walker
and a general 2� 2 unitary transformation matrix for the coin oper-
ator. It is possible that the coin operator may change with time or
have different coin operators at each discrete position of the walk
[22–24]. In all that follows, however, we will only consider a coin
operator which is constant in time and uniform for all positions.

2.1. Discrete quantum walks on a line

For concreteness, we consider a two state quantum walker
located at the origin of a line extending in the positive and negative
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directions. Each step of the walker has equal length and occurs at
discrete time intervals. Let Hz represent the Hilbert space of the
locations of the walker along the infinite line. This space is spanned
by the basis states j ii : i 2 Zf g, such that j ii corresponds with a
walker localized at position i on the line. The coin space Hc of
our quantum walker will be spanned by basis states fj"i; j#ig.
The Hilbert space for the walker system will now be Hw ¼
Hz�Hc, the tensor product of the position space with the coin
space. In our model the spin-up and spin-down amplitudes will
step in opposite directions along the line such that

j i; "i�! j i� 1; "i ð1aÞ
j i; #i�! j iþ 1; #i ð1bÞ

a spin-up amplitude steps in the negative direction (to the left) and
a spin-down amplitude steps in the positive direction (to the right).
The conditional shift operator in Hw which does this is

SZ ¼
X1

i¼�1
j i� 1ihi j � j"ih"j þ

X1
i¼�1

j iþ 1ihi j � j#ih#j ð2aÞ

¼
X1

s¼0

X1
i¼�1

j iþ 2s� 1ihi j � j sihs j; ð2bÞ

expression (2b) is expressed in the quantum computational basis
for which j 0i ¼j"i and j 1i ¼j#i.

Prior to taking each step, the coin operator would be applied to
the walker’s amplitude at each position j ii effectively rotating the
spin-state into a coherent superposition of spin-up and spin-down
amplitudes and thus control the portion of amplitude which is
shifted to the left and to the right. A parameterization of the most
general 2� 2 unitary coin operator, to within a global phase
change, is [24]

C2 ¼
ffiffiffiffiqp ffiffiffiffiffiffiffiffiffiffiffiffi

1� q
p

eiaffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
eib � ffiffiffiffiqp ei aþbð Þ

 !
; 0 6 q � 1; 0 6 a; b 6 p: ð3Þ

The complete operator for each step of the discrete quantum
walk on the infinite line is then

UZ ¼ SZ � IZ � C2ð Þ: ð4Þ

This provides a uniform application of the coin operator C2 across
all the possible positions of the walker.

An often cited coin operator is the 2� 2 Hadamard operator
[5,11,25]

C2 q ¼ 1
2
;a ¼ 0; b ¼ 0

� �
¼ 1ffiffiffi

2
p

1 1
1 �1

� �
: ð5Þ

Fig. 1 illustrates the four step evolution of a quantum walk on a
line with the initial state j wii ¼j 0; "i. Each step of the quantum
walk is divided into a unitary transformation using the Hadamard
coin operator of Eq. (5) immediately followed by the conditional
shift operator in Eq. (2b).

As the walk progresses, an asymmetry in the amplitudes skew-
ing the probabilities for finding the walker at locations on the left
side of the initial position becomes evident on completion of the
third step. The probabilities will be skewed to the right with an ini-
tial state of j 0; #i. The asymmetry arises from the fact that the Had-
amard operator treats the two states j"i and j#i differently by
inducing a phase inversion in the j#i amplitude. The Hadamard
operator will develop a symmetric walk in the probabilities with

j wii ¼ 1ffiffi
2
p j 0; "i þ iffiffi

2
p j 0; #i

� �
.

2.2. Discrete quantum walks on a cycle

The conditional shift operator in Eq. (2b) can be readily modi-
fied to operate on a cycle or closed loop of k steps as

Sk ¼
X1

s¼0

Xk�1

i¼0

j iþ 2s� 1ðmod Þkihi j � j sihs j ð6Þ

Uk ¼ Sk � Ik � C2ð Þ; ð7Þ

where Ik is the k� k identity matrix. Uk can be expressed as a
ð2kÞ � ð2kÞ matrix. Consider the k ¼ 3 loop, the operator in Eq. (7)
becomes,

U3¼

0 0
ffiffiffiffiqp ffiffiffiffiffiffiffiffiffiffiffi

1�q
p

eia 0 0

0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffi
1�q

p
eib � ffiffiffiffiqp ei aþbð Þ

0 0 0 0
ffiffiffiffiqp ffiffiffiffiffiffiffiffiffiffiffi

1�q
p

eiaffiffiffiffiffiffiffiffiffiffiffi
1�q

p
eib � ffiffiffiffiqp ei aþbð Þ 0 0 0 0ffiffiffiffiqp ffiffiffiffiffiffiffiffiffiffiffi

1�q
p

eia 0 0 0 0

0 0
ffiffiffiffiffiffiffiffiffiffiffi
1�q

p
eib � ffiffiffiffiqp ei aþbð Þ 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð8Þ

Fig. 2 shows a quantum walk on a k ¼ 3 cycle using the coin
operator C2 q ¼ 2

3 ; a ¼ 0; b ¼ 0
� �

.

3. Conditions for quantum state revivals

In Fig. 2 we see it is possible, with certain choices of a constant
and uniform coin operator, for the quantum walk on a cycle to
return to its initial quantum state within a finite number of steps.
The occurrence of quantum state revivals in quantum walks on
cycles was probably first mentioned in the literature by Travagli-
one and Milburn [26] where they noted a revival in eight steps
on a cycle with k ¼ 4. Later, Tregenna et.al. [24] found a handful
of other instances. In this paper we wish to establish the general
conditions for quantum state revivals in quantum walks on cycles.
We observe that the operator Uk is a 2� 2 block-circulant matrix
[27,28] and is the generator of a unitary cyclic group. When the
unitary operator Uk q;a; bð Þ generates a finite cyclic group, quan-
tum state revival will occur.

3.1. Circulant matrices

If you run into a circulant in the course of a problem you are
happy to make its acquaintance. – Persi Diaconis

Of the many interesting properties circulant matrices have the
following are the most important for us:[29]

� The class circulant is closed under product, transpose, and
inverse operations.
� All circulants are simultaneously diagonalized by the Fourier

matrix.

Due to its circulant symmetries only a single row or column of a
circulant matrix is required to specify it. The first row or column of
a circulant matrix is referred to as its circulant vector m. For an
M �M circulant matrix A ¼ am;nð Þ the first row circulant vector is
m ¼ a0; a1; . . . ; aM�1ð Þ where we denote the first position with 0 as
a matter of convenience. The circulant matrix A can then be repre-
sented as

A ¼ ðaðn�mÞðmod MÞÞm;n ¼ CIRCMða0; a1; . . . ; aM�1Þ: ð9Þ

The quantum walk operator Uk of Eq. (7) is 2� 2 block circulant
and is represented in terms of a circulant vector of 2� 2 matrices,

Uk ¼ CIRCk
0 0
0 0

	 

0

;

ffiffiffiffiqp ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
eia

0 0

" #
1

;
0 0
0 0

	 

2

; � � � ;
 

0 0ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

p
eib � ffiffiffiffiqp ei aþbð Þ

	 

k�1

!
:

ð10Þ
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