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a b s t r a c t

Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment

planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in

computing time by correlated sampling relative to conventional Monte Carlo methods when equal

statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty

arising from random effects, however, is not a straightforward task specially when the error

distribution is non-normal. The purpose of this study is to evaluate the applicability of the F

distribution and standardized uncertainty propagation methods (widely used in metrology to estimate

uncertainty of physical measurements) for predicting confidence intervals about efficiency gain

estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified

brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution

of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this

distribution. It was found that the corresponding relative uncertainty was as large as 37% for this

particular problem. The uncertainty propagation framework predicted confidence intervals reasonably

well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a

separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence

interval. These discrepancies were influenced by several photons with large statistical weights which

made extremely large contributions to the scored absorbed dose difference. The mechanism of

acquiring high statistical weights in the fixed-collision correlated sampling method was explained

and a mitigation strategy was proposed.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Monte Carlo transport simulations offer a powerful tool to
accurately calculate absorbed dose distributions in complex
geometries. Such simulations have successfully been used in the
past to study the perturbing effects of heterogeneities in typical
brachytherapy configurations (Williamson et al., 1993; Kirov et al.,
1996). Due to the statistical nature of the Monte Carlo method, the
results are associated with an uncertainty that is inversely propor-
tional to the number of photon histories simulated and thus to the
computing time. For the purpose of clinical patient dose-planning,

where the geometry of the problem varies from patient to patient,
the central processing unit (CPU) time of no more than a few
minutes is desirable. To achieve this goal, variance reduction
techniques therefore need to be exploited. Hedtjärn et al. (2002)
tested a fixed-collision correlated sampling method (Rief, 1984;
Lux and Koblinger, 1991; Sampson et al., 2009) suitable for use
in photon transport codes. In contrast to previous applications of
correlated sampling to radiation dosimetry transport (Ma and
Nahum, 1993; Holmes et al., 1993) where only the initial trajectory
and random number seed of particle histories are fixed, the
locations and outcomes of photon collisions, in terms of scattered
photon energy and angle, are all fixed and only the particle weights
are allowed to vary with the perturbing geometry. Use of the fixed-
collision method benefits from the applicability of the kerma
approximation in calculating absorbed dose implying that only
photon collisions need to be fixed.
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The efficiency of a Monte Carlo method is inversely propor-
tional to a product of the total CPU time and the variance of the
scored quantity. The efficiency gain of a correlated sampling
scheme compared to a conventional one is then often defined as
the ratio of their efficiencies. Its estimate is a stochastic variable
whose realization may differ from the non-stochastic true value;
it is affected by uncertainty. Methods for evaluating measurement
uncertainty (JCGM, 2009) include: (i) uncertainty frameworks
based on the law of propagation of uncertainty, e.g., the GUM
report of the Joint Committee for Guides in Metrology (JCGM,
2008b) or Report 1297 from NIST (Taylor and Kuyatt, 1994)
hereafter referred to as GUM framework; (ii) standard parametric
statistics, in which the probability distribution of the output
quantity (efficiency gain estimate in our case) is derived via
mathematical analysis, and (iii) Monte Carlo or bootstrapping
methods, in which the distribution of the output quantity is
established by making random draws from the probability
distributions of input quantities (JCGM, 2008b). The parametric
statistics approach provides the most accurate predictions if its
assumptions about distributions of input quantities are correct.
The GUM framework is often used in engineering and applied
physics if distributions of output quantities can be approximated
by normal or t distributions. In other cases, Monte Carlo sampling
may be the only viable alternative. Since the ratio of two random
variables (the efficiency gain estimate) may deviate from both the
normal and t distributions assumed in the GUM framework, and
the asymptotic normality of the means of scored absorbed dose
and dose difference often assumed in the parametric statistics
approach cannot be guaranteed, it is of interest whether these
methods can be used to accurately predict the uncertainty of
efficiency gain.

The aim of this work is to evaluate the applicability of the GUM
framework and a commonly used parametric statistical model for
analysis of variance (the F distribution) for the calculation of
uncertainty in fixed-collision correlated Monte Carlo efficiency
relative to that of a conventional Monte Carlo code for a typical
idealized brachytherapy dose calculation geometry. As the efficiency
gain and its uncertainty are closely related to the implementation of
the correlated sampling method, the aim is also to analyze the inner
working of the method and propose improvements of the current
implementation.

2. Theory

In this section we introduce the concepts of efficiency gain,
correlated sampling, bootstrap method and highest density inter-
vals; they will be needed for an in-depth discussion of the
efficiency gain estimate behavior and construction of confidence
intervals for that quantity.

2.1. Efficiency and efficiency gain

Let the term ‘‘history’’ denotes a sequence of interactions,
initiated by emission of a primary particle by the radioactive source,
that the particle experiences as it loses energy. We assume that the
Monte Carlo simulation is time independent (does not depend on
history number) and interactions in one history are not affected by
interactions in previous histories. In mathematical terms, assume
that a history i contributes a certain amount Zi to the scored
quantity (e.g., absorbed dose). Zi is a random variable with a
distribution DZ, mean value EðZiÞ and variance VðZiÞ. This distribu-
tion and hence the mean value and variance are the same for all
histories. Moreover, the Zi are independent random variables. Under
these assumptions, a simulated physical quantity can be estimated
by the average Z ¼ ð1=nÞ

Pn
i ¼ 1 Zi. Efficiency eZ of the Monte Carlo

method is then conventionally defined as the inverse of the product
of the variance VðZÞ of the average Z times the computing (CPU)
time tZ :

eZ � ½VðZÞtZ �
�1: ð1Þ

For simplicity we assume that the time tZ is a non-stochastic
quantity. The efficiency eZ is a non-stochastic quantity too. Since
VðZÞ ¼ VðZÞ=n, the efficiency of a run consisting of n histories is
independent of the number of histories:

eZ ¼ ½VðZÞtZ �
�1 ¼ ½VðZ1ÞtZ=n��1 ¼ ½VðZ1ÞtZ�

�1: ð2Þ

Here, tZ ¼ tZ=n is the average CPU time per one history.
The efficiency of a sampling scheme is usually quantified in

terms of the efficiency gain, g, defined as a ratio of the efficiency
of the tested sampling method, eT , to that of the reference
sampling method, eR
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where nR and nT are the numbers of histories of the reference and
tested methods, respectively. This expresses the reduction in CPU
time tT , that is achieved in obtaining equal uncertainties VðT Þ ¼ VðRÞ

of the calculated value compared to the corresponding CPU time tR

using the reference sampling scheme. Alternatively, efficiency gain
expresses the increase in statistical precision (reduced variance),
that is achieved for equal CPU times tT ¼ tR .

Efficiency gain g in Eq. (3) is a non-stochastic quantity whose
value is typically estimated using the (stochastic) efficiency gain
estimate G:

G�
n�1

R S2
RtR

n�1
T S2

TtT

, ð4Þ

where the estimate of the variance of the reference sampling
method, S2

R, is defined for nR samples Ri as

S2
R �

1

nR�1

XnR

i ¼ 1

ðRi�RÞ2 ð5Þ

and similarly for the estimate of the variance of the tested
sampling method, S2

T. By introducing variables X ¼ R
ffiffiffiffiffi
tR

p
and

Y ¼ T
ffiffiffiffiffi
tT

p
, Eq. (4) can also be written as
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n�1

R S2
X

n�1
T S2

Y

, ð6Þ

where S2
X and S2

Y are sample variances defined by formula (5). For
brevity, we often call calculated samples of the efficiency gain
estimate G simply as efficiency gain. This should not lead to a
confusion since g cannot be directly calculated.

2.2. Correlated sampling

The correlated sampling algorithm has been described exten-
sively by Hedtjärn et al. (2002), Sampson et al. (2009): only
aspects pertinent to this study will be described here. In corre-
lated sampling, the heterogeneous geometry is treated as a
perturbation of the corresponding homogeneous (unperturbed)
system, which consists solely of uniform density water. As such,
the absorbed dose delivered to the heterogeneous system, DhetðxÞ,
is assumed to be a correction to the absorbed dose delivered,
DhomðxÞ, in the corresponding homogeneous system:

DhetðxÞ ¼HCFðxÞ � DhomðxÞ, ð7Þ

where HCFðxÞ is the heterogeneity correction factor and x denotes
the position of a given voxel in a 3D grid constituting the system.
An estimate of the HCF calculated by the correlated sampling
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