

Available online at www.sciencedirect.com

Applied Radiation and Isotopes 64 (2006) 1001-1005

Applied Radiation and Isotopes

www.elsevier.com/locate/apradiso

Cyclotron production of ⁶⁴Cu by deuteron irradiation of ⁶⁴Zn

K. Abbas^{a,*}, J. Kozempel^{a,b}, M. Bonardi^c, F. Groppi^c, A. Alfarano^a, U. Holzwarth^a, F. Simonelli^a, H. Hofman^a, W. Horstmann^a, E. Menapace^d, L. Lešetický^b, N. Gibson^a

^aInstitute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA), Italy

^bCharles University Prague, Faculty of Science, Department of Organic and Nuclear Chemistry, 128 43 Prague, Czech Republic

^cLASA, Radiochemistry Laboratory, University and INFN, via F.lli Cervi 201, I-20090 Segrate (MI), Italy

^dENEA, Applied Physics Division, Bologna, Italy

Received 12 July 2005; received in revised form 25 November 2005; accepted 30 December 2005

Abstract

The short-lived (12.7 h half-life) ⁶⁴Cu radioisotope is both a β^+ and a β^- emitter. This property makes ⁶⁴Cu a promising candidate for novel medical applications, since it can be used simultaneously for therapeutic application of radiolabelled biomolecules and for diagnosis with PET. Following previous work on ⁶⁴Cu production by deuteron irradiation of natural zinc, we report here the production of this radioisotope by deuteron irradiation of enriched ⁶⁴Zn. In addition, yields of other radioisotopes such as ⁶¹Cu, ⁶⁷Cu, ⁶⁵Zn, ^{69m}Zn, ⁶⁶Ga and ⁶⁷Ga, which were co-produced in this process, were also measured. The evaporation code ALICE-91 and the transport code SRIM 2003 were used to determine the excitation functions and the stopping power, respectively. All the nuclear reactions yielding the above-mentioned radioisotopes were taken into account in the calculations both for the natural and enriched Zn targets. The experimental and calculated yields were shown to be in reasonable agreement. The work was carried out at the Scanditronix MC-40 Cyclotron of the Institute for Health and Consumer Protection of the Joint Research Centre of the European Commission (Ispra site, Italy). The irradiations were carried out with 19.5 MeV deuterons, the maximum deuteron energy obtainable with the MC-40 cyclotron. © 2006 Elsevier Ltd. All rights reserved.

Keywords: ⁶⁴Cu; ⁶¹Cu; ⁶⁶Ga; ⁶⁷Ga; Target yield; Radioisotope production; Cyclotron; PET; Therapy

1. Introduction

The characteristics of ⁶⁴Cu (12.7 h half-life, 39% β^- 578 keV end point, 61% β^+ /EC, with a γ -ray emission at 1345.84 keV at 0.473% branching ratio, in addition to the 511 keV annihilation peak), make ⁶⁴Cu a radioisotope suitable for labelling of a wide range of radiopharmaceuticals, for both PET imaging, and radioimmunotherapy (Firestone et al., 1998). The maximum range of β^+ particle with 653 keV end point energy in soft tissue is ~2.7 mm and the "average" range is ~1 mm. Cu(II) forms a class of stable complexes and chelates with dithiocarbamates (DTC) like ethylmethyl-DTC, with thiosemicarbazones like PTSM, ATSM, and especially with azamacrocyclic chelants (cyclens), like DOTA, DOTP and SarAr. Over the

*Corresponding author. Tel.: + 39 0332785673/9466; fax: + 39 0332785388.

E-mail address: kamel.abbas@jrc.it (K. Abbas).

past several years, the behaviour of these compounds of copper has been investigated in cell cultures, rats and humans (Sun and Anderson, 2004).

The usual method for ⁶⁴Cu production is based on proton irradiation of ⁶⁴Ni using cyclotrons (Szelecsénil et al., 1993; McCarthy et al., 1997). The method based on fast neutron irradiation of 64 Zn through 64 Zn(n,p) reaction has been studied and revealed a low yield and contamination with ⁶⁷Cu (Hetherington et al., 1986; Zinn et al., 1994) while the method of thermal neutron irradiation of ⁶³Cu in a nuclear reactor leads to low specific activity. Among the possible methods for production of NCA ⁶⁴Cu (and ⁶¹Cu), deuteron irradiation of natural zinc targets has been reported (Neirincks, 1977; Abbas et al., 2001; Groppi et al., 2004; Bonardi et al., 2001; Hilgers et al., 2003) and revealed that ⁶⁴Cu is co-produced with several other radioisotopes including ⁶⁶Ga and ⁶⁷Ga. Therefore, handling of the irradiated Zn target has to be performed in highly radiation-shielded cells.

^{0969-8043/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.apradiso.2005.12.021

In the present paper, we have studied the cyclotron production of ⁶⁴Cu by deuteron irradiation of enriched ⁶⁴Zn, in order to avoid the co-production of Ga and other undesired radioisotopes. In case of future commercialisation of ⁶⁴Cu-based radiopharmaceuticals, the cost of ⁶⁴Zn is much lower than that of ⁶⁴Ni, therefore this method may be cost effective. Moreover, this method would reduce the radioactive waste stream as compared with irradiation of natural Zn. Following theoretical calculations using the evaporation code Alice 91 (Blann, 1996) and SRIM 2003 (Ziegler, 2003) for excitation functions and stopping power predictions, respectively, irradiation of enriched ⁶⁴Zn at 19.5 MeV deuteron were carried out and the results are reported in this paper. The work was performed at the Cyclotron Laboratory of the Institute for Health and Consumer Protection of the Joint Research Centre of the European Commission (Ispra site, Italy).

2. Production of ⁶⁴Cu by deuteron irradiation of zinc

2.1. Deuteron irradiation of natural zinc

The primary products from deuteron irradiation of natural zinc include ⁶⁴Cu, ⁶¹Cu, ⁶⁷Cu, ⁶⁵Zn, ⁶⁹mZn, ⁶⁶Ga, ⁶⁷Ga, where the production of a given radioisotope may be optimised by adjusting some irradiation parameters, such as the energy of the projectile or the target thickness. The yields (A) are calculated as

$$A = N_{v}I(1 - e^{-\lambda t}) \int_{E_{Th}}^{E_{p}} \sigma(E) \left[\left(\frac{\mathrm{d}E}{\mathrm{d}x} \right)(E) \right]^{-1} \mathrm{d}E$$

where N_v is the number of target atoms for the desired reaction per unit volume, *I* is the beam intensity, λ is the radioactive constant of the produced isotope $(\lambda = \ln(2)/T_{1/2})$, *t* is the duration of the irradiation, E_p is the beam energy, E_{Th} is the reaction threshold energy, $\sigma(E)$ is the excitation function and dE/dx(E) is the stopping power of the target material.

Table 1 shows the calculated thick target yields of different radioisotopes versus the energy for deuteron irradiation of natural zinc. The natural isotopic composition of zinc is taken into account in these calculations. The yields of ⁶⁷Cu, ⁶⁵Zn and ^{69m}Zn radioisotopes were calculated only for the energy of 19.5 MeV deuterons as they are very low at lower energies. The experimental studies regarding deuterons irradiation of natural Zn (Neirincks 1977; Abbas et al., 2001; Groppi et al., 2004; Bonardi et al., 2001; Hilgers et al., 2003) reported results in good agreement with those shown in Table 1, with significant quantities of ⁶⁶Ga and ⁶⁷Ga radioisotopes coproduced with the desired ⁶⁴Cu radioisotope. ⁶⁶Ga emits rather intense and high-energy γ -rays, 1039 keV (38.4%) and 2752 keV (23.5%), which consequently requires adequate shielding to protect the operators during radiochemical separations. Ga radioisotopes can be easily chemically separated from Zn or Cu materials, and the

⁶⁷Ga radioisotope is already in use in medical applications. However, via deuteron irradiation of natural Zn, ⁶⁷Ga is co-produced with ⁶⁶Ga and the two radioisotopes cannot be chemically separated, therefore a long decay period is required to reduce the ⁶⁶Ga activity. In fact, the main dose rate from an activated natural zinc is generated by the Ga radioisotopes, so if ⁶⁷Ga is not required, the production of these radioisotopes simply causes extra shielding requirements and radioactive waste. For instance, a sample disc of 1 cm diameter containing 37 MBq each of ⁶⁴Cu, ⁶⁶Ga and 67 Ga would generate a dose rate at 10 cm of about 880 μ Sv/ h of which 93% is due to the Ga radioisotopes. In case of an additional 37 MBq of ⁶¹Cu in the sample disc, the contribution of Ga radioisotopes in the generated dose rate is estimated at 70%. ⁶¹Cu has, however, a much shorter half-life and decays away rapidly. These dose rates are estimated using MicroShield software (version 5.03a, Grove Software Inc, USA).

2.2. Approach for reduction of Ga radioisotopes

One of the possibilities of reducing the co-production of Ga radioisotopes is to irradiate the natural Zn at low deuteron energies. According to Table 1, by performing an irradiation at 14 MeV instead of 19.5 MeV, the production yield of ⁶⁴Cu which at low energy takes place mostly through the ${}^{66}Zn(d,\alpha){}^{64}Cu$ reaction would be reduced by factor 2.5 while the reduction factors for the production of ⁶⁶Ga and ⁶⁷Ga would be 3.8 and 1.7, respectively (Fig. 1). In addition, the ⁶¹Cu production would be reduced by a factor of 5.1 although its production does not cause problems due to its relatively short half-life (3.4 h). As summarised in Table 1, the ⁶⁶Ga and ⁶⁷Ga radioisotopes are created from the ⁶⁶Zn, ⁶⁷Zn and ⁶⁸Zn isotopic components of natural Zn. Therefore, it is possible to produce pure ⁶⁴Cu free of Ga radioisotopes by deuteron irradiation of 64 Zn through the 64 Zn(d,2p) reaction. The calculated thick target yields of 64 Cu, 61 Cu and 65 Zn for the case of deuteron irradiation of pure ⁶⁴Zn are given in Table 2, together with the corresponding yields for natural Zn. In addition to avoiding the production of Ga radioisotopes, deuteron irradiation of ⁶⁴Zn should, in theory, increase the thick target yield of ⁶⁴Cu. In this work, the deuteron irradiation of 64 Zn of 99.4% isotopic purity was performed to verify the theoretical predictions.

3. Experimental

3.1. Target material

The ⁶⁴Zn target consisted of a 7 mm diameter disk with a thickness of $325\pm3\,\mu\text{m}$ ($232\,\text{mg/cm}^2$) purchased from ISOFLEX Inc., USA with the following isotopic distribution (atom percent): ⁶⁴Zn: 99.4 \pm 0.1, ⁶⁶Zn: 0.39, ⁶⁷Zn: 0.04, ⁶⁸Zn: 0.15 and ⁷⁰Zn: <0.02\%. ⁴⁸V activity produced in a disk of pure Ti (99.6% purity, $30\pm4\,\mu\text{m}$ thickness and 7 mm diameter, Good Fellow) via ^{*nat.*}Ti(d, x)⁴⁸V reaction

Download English Version:

https://daneshyari.com/en/article/1879925

Download Persian Version:

https://daneshyari.com/article/1879925

Daneshyari.com