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a b s t r a c t

Many image processing methods applied to magnetic resonance (MR) images directly or indirectly rely
on prior knowledge of the statistical data distribution that characterizes the MR data. Also, data distri-
butions are key in many parameter estimation problems and strongly relate to the accuracy and precision
with which parameters can be estimated. This review paper provides an overview of the various dis-
tributions that occur when dealing with MR data, considering both single-coil and multiple-coil acqui-
sition systems. The paper also summarizes how knowledge of the MR data distributions can be used to
construct optimal parameter estimators and answers the question as to what precision may be achieved
ultimately from a particular MR image.

© 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Introduction

Magnetic resonance imaging (MRI) is the diagnostic tool of
choice in biomedicine. It is able to produce high-quality three-
dimensional images containing an abundance of physiological,
anatomical and functional information. A voxel's grey level within
anMR image represents the amplitude of the radio frequency signal
coming from the hydrogen nuclei (protons) within that voxel. To
draw reliable diagnostic conclusions from MR images, visual in-
spection alone is often insufficient. Quantitative data analysis is
required to extract the information needed. Such an analysis can
almost without exception be formulated as a parameter estimation
problem. The parameters of interest can simply be the values of the
true MR signal underlying the noise corrupted data points [1e3],
but also proton densities (in the construction of proton density
maps [4,5]), relaxation time constants (in the construction of T1, T2
and T�2 maps [4e11]) or diffusion parameters (in diffusion MRI)
[12e14]. Different estimators can be constructed to estimate one
and the same parameter, but it is well known that the best esti-
mators (in terms of accuracy and precision) are constructed by
properly taking the statistical distribution of the data into account.
Hence, knowledge of the MRI data distribution is of vital
importance.

This review paper gives an overview of the various distributions
that occur when dealing with MR data, considering both single-coil
and multiple-coil systems. The paper also summarizes how
knowledge of these distributions can be used to construct optimal
estimators and to answer the question as to what precision may be
achieved ultimately from a particular MR image.

The organization of the paper is as follows. Section 2 briefly re-
views MR signal detection and introduces a statistical model of the
complex valued raw MR data acquired in the so-called k-space (i.e.,
the spatial frequencydomain). Section3 thendescribes the statistical
distribution of the reconstructed images in the spatial domain,
assuming the data have been acquired using a single-coil system.
Complex images as well as magnitude and phase images, which can
be constructed from the complex images straightforwardly, are
considered. Since image acquisition with multiple coils is becoming
more and more common nowadays, Section 4 describes the distri-
bution of complex and magnitude images acquired with multiple-
coil systems. Section 5 reviews the theory that explains how
knowledge of the distribution of the MR images can be used to (i)
derive a lower bound on the variance of any unbiased estimator of
parameters from these images (the so-called Cram�er-Rao Lower
Bound), and (ii) to construct themaximumlikelihood (ML) estimator,
which attains this lower bound at least asymptotically. In Section 6,
this theory is applied to (i) derive theCRLB for unbiased estimation of
the underlying true signal amplitude from (single-coil) magnitude
images and, (ii) derive theML estimator for this estimation problem.
In Section 7, conclusions are drawn.

Notation: throughout this paper, vectors will be underlined and
matrices will be expressed in capital letters. Furthermore, random

* Corresponding author. iMinds-Vision Lab, University of Antwerp, Uni-
versiteitsplein 1, N.1, 2610 Wilrijk, Belgium. Tel.: þ32 (0) 3 265 2869.

E-mail addresses: a.j.dendekker@tudelft.nl, arjan.dendekker@uantwerpen.be
(A.J. den Dekker).

Contents lists available at ScienceDirect

Physica Medica

journal homepage: http: / /www.physicamedica.com

http://dx.doi.org/10.1016/j.ejmp.2014.05.002
1120-1797/© 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Physica Medica 30 (2014) 725e741

Delta:1_given name
Delta:1_surname
mailto:a.j.dendekker@tudelft.nl
mailto:arjan.dendekker@uantwerpen.be
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejmp.2014.05.002&domain=pdf
www.sciencedirect.com/science/journal/11201797
http://www.physicamedica.com
http://dx.doi.org/10.1016/j.ejmp.2014.05.002
http://dx.doi.org/10.1016/j.ejmp.2014.05.002
http://dx.doi.org/10.1016/j.ejmp.2014.05.002


variables (RVs) will be expressed in bold face. The operators E½,�
and Varð,Þ denote the expectation and variance of a random vari-
able, respectively. The real part of a complex valued variable z is
denoted as zR and the imaginary part as zI. The complex conjugate
of X is denoted as X* and the transpose and complex conjugate
transpose of X are denoted as XT and XH, respectively. Furthermore,
we use fx(x) to denote the probability density function (PDF) of the
random variable x. The conditional PDF of the RV x conditioned on
the RV y is denoted as fxjyðxjyÞ. The modified Bessel function of the
first kind of order n is denoted as Inð,Þ. The symbol ı denotes

ffiffiffiffiffiffiffi
�1

p
.

Signal detection and modeling

This section briefly reviews the mathematics behind signal
detection inMRI and describes the concepts of signal demodulation
and quadrature detection. The section is to a large extent based on
Refs. [15e19]. For a more comprehensive description, the reader is
referred to those references. The final purpose of the section is to
introduce a statistical model of the detected MR signal.

Modeling the noise free signal

In MRI, an object is placed in a strong static, external, homog-
enous magnetic field B0 that polarizes the protons in the object,
yielding a net magnetic moment oriented parallel to B0. Let's as-
sume that B0 points in the z-direction. Next, a radio frequency pulse
is applied that generates another, oscillating magnetic field B1
perpendicular to B0. This so-called excitation field tips away the net
magnetic moment from the z-axis, producing a magnetization
component transverse to the static field. This transverse magneti-
zation component precesses at the so-called Larmor frequency

u0 ¼ g

����B0����;
with g the gyromagnetic ratio. This precessing magnetization
vector induces a voltage in the receiver/detector coil (a conducting
loop). Spatial information can be encoded in the received signal by
augmenting B0 with additional, spatially varying magnetic fields.
These so-called gradient fields vary linearly in space and are
denoted as Gx, Gy and Gz. For example, when Gx is applied, the
strength of the static magnetic field will vary with position in the x-

direction as
����BzðxÞ���� ¼ ����B0����þ Gxx, where the subscript z is used to

denote that the magnetic field points in the z-direction. In this way,
gradient fields can be used to make the precession frequency vary
linearly in space. MRI signal detection is based on Faraday's law of
electromagnetic induction and the principle of reciprocity [15].
Assuming a static inhomogeneous magnetic field pointing in the z-
direction, the (noise free) voltage signal v(t) in the receiver coil is
related to the transverse magnetization distributionMxyðr; tÞ of the
object by the expression [15]
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with r ¼ ðx; y; zÞT the position in the laboratory frame, t¼ 0þ the
time instant immediately after the excitation pulse, uðrÞ the free
precession frequency, T2 a relaxation time constant, Br;xyðrÞ the
detection sensitivity of the coil, frðrÞ the reception phase angle, and
feðrÞ the initial phase shift introduced by RF excitation. The

detection sensitivity Br;xyðrÞ is defined as the xy vector component
of the field generated at r by a unit current in the coil. The phase
contributions frðrÞ and feðrÞ take a value between 0 and 2p
depending on the direction of, respectively, Br;xyðrÞ and Mxyðr;0þÞ
in the transverse plane [15]. Assuming that a frequency encoding
gradient Gx was turned on during the signal read out (i.e., during
data acquisition), we have

u
�
r
�
¼ u0 þ Du

�
r
�
; (2)

with

Du
�
r
�
¼ gGxx; (3)

where DuðrÞ is the spatially varying resonance frequency in the
Larmor-rotating frame, i.e., the coordinate systemwhose transverse
plane is rotating clockwise at an angular frequency u0 [15].
Furthermore, if we assume that a so-called phase encoding gradient
Gy was turned on for a time interval Tpe before the signal read out,
we have to add a position dependent initial phase contribution
fpeðrÞ to v(t):

vðtÞ ¼
Z
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with

fpe

�
r
�
¼ gGyyTpe: (5)

MR image reconstruction concerns the inverse problem of
reconstructing the transverse magnetization distribution Mxyðr; tÞ
from the voltage signal v(t). If we assume that a slice selective
gradient Gz has been applied in the z-direction during the excitation
period, only protons in the selected slice (at, say, z¼ z0) are excited,
so that Mxyðx; y; z0; tÞ ¼ Mxyðx; y; tÞ [18]. The MRI reconstruction
problem then reduces to producing a spatial map in two di-

mensions. Assuming that

�����Mxyðr;0þÞ
�����e�t=T2ðrÞ is relatively constant

during data acquisition, Eq. (4) can be simplified to

vðtÞ ¼
Z
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with tacq the time at the center of the acquisition and
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In practice, DuðrÞ≪u0 and v(t) is a high frequency bandpass
signal centered about the frequency ±u0. The high-frequency na-
ture of v(t) may cause unnecessary problems for electronic circuits
in later processing stages [15]. In practice, these problems are cir-
cumvented by exploiting the following property of the bandpass
signal v(t). It can be shown that the bandpass signal v(t) can be
represented as [19]
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