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a b s t r a c t

In thermoluminescence (TL) measurements radiative recombination takes place at various temperatures.
Typically, the quantum efficiency of luminescence decreases with increasing temperature. We call this
mechanism the thermal quenching. There is no simple method to ‘restore’ unquenched TL data. This
paper presents an algorithm, based on the Monte-Carlo method, for calculating the quenching function
and restoring the unquenched TL curve. For this purpose we use a series of TL glow curves measured at
the same initial conditions with variable heating rates. The method is quite general and no particular
kinetic model of TL need to be assumed. The reliability of the method is tested using computer generated
TL glow curves obeying the simple trap model (STM) kinetics.

� 2010 Published by Elsevier Ltd.

1. Introduction

During thermoluminescence (TL) measurements various
processes take place simultaneously. Prior to the measurement,
a sample under study has to be excited by a high-energy (e.g. UV,
X-ray or gamma) radiation. A portion of the energy is stored in traps
in the solid. When the sample is heated the energy is released in the
form of light. Trapped charge carriers are thermally released to
a transport band undergoing radiative recombination in recombi-
nation centers (RCs). A series of peaks appearing in a TL glow curve
is usually attributed to trap levels characterized by different
activation energies.

Radiative recombination takes place at various temperatures.
Typically, the quantum efficiency of luminescence decreases at
higher temperatures. We call this mechanism the thermal
quenching. In TL and optically stimulated luminescence (OSL)
measurements it may be an important factor influencing the
experimental data.

The effect of thermal quenching may be observed while
performing a series of TL measurements with different heating
rates. Typically, with increasing heating rate, the maximum of a TL
glow peak shifts to higher temperatures. At a higher temperature,

the luminescence is quenched more intensely so that the whole
area under TL peak decreases. An illustration of this phenomenon is
shown in Fig. 1. It is assumed that the quenching function (QF) has
the form:

hðC;W; TÞ ¼
�

1þ Cexp
�
�W
kT

���1

(1)

where C and W are ‘quenching parameters’. T is the sample
temperature and k is the Boltzmann constant (Akselrod et al., 1998).
Therefore, instead of the normal TL intensity JTL(T), we measure the
function disturbed by quenching:

JðTÞ ¼ JTLðTÞhðC;W; TÞ: (2)

There is no simple way to determine the quenching parame-
ters as well as the ‘unquenched’ intensity JTL(T). However, some
ideas for approximate determination of QF, assuming e.g. its
constant value throughout the peak or a special order of kinetics
were presented by Pagonis et al. (2006), Dallas et al. (2008) and
others.

This paper presents a different method for calculating the
quenching parameters from a series of variable heating rates TL
measurements. The method is quite general and does not assume
any particular type of TL kinetics.
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2. The algorithm for calculating quenching function
parameters

The difficulty in estimating the quenching parameters is related
to the fact, that during the measurements we are dealing with
luminescence intensities already distorted by quenching. Quench-
ing changes the TL peak shapes and the positions of the maxima,
which are important i.e. for determining basic parameters of traps
and recombination centers. For these reasons we cannot use
directly the quenched data for calculations. To solve the problem
we formulate an ‘area-invariant’ hypothesis and then we will
propose a numerical algorithm to determine QF.

First of all, let us note that when the quenching is absent, the
whole area under the TL peak should be strictly conserved (at least
within the framework of basic TL models: STM – simple trap model
and LT – localized transitions). Moreover, it seems that the peak
height and peak width are (approximately) inversely proportional to
each other when it is shifted towards higher temperatures with
increasing heating rate b. Now, let us consider the following integral:

S3;b ¼
Ztð2Þ3

tð1Þ3

Jðb; tÞdt ¼ 1
b

ZT ð2Þ3

T ð1Þ3

Jðb; TÞdT ; (3)

where: 0 < 3 < 1 and tð1Þ3 ; tð2Þ3 ; Tð1Þ3 ; Tð2Þ3 denote positions on
horizontal axis, on both sides of the TL peak where the intensity
falls down to 3-th part of the maximum intensity, i.e.:

J
�

b; tð1Þ3

�
¼ J
�

b; tð2Þ3

�
¼ 3Jmax; (4)

J
�

b; Tð1Þ3

�
¼ J
�

b; Tð2Þ3

�
¼ 3Jmax: (5)

Therefore, we postulate the following hypothesis: the integral
S3,b (3) does not depend on the heating rate b.

Its validity will be discussed in the next section. The hypothesis
allows us to formulate the following Monte-Carlo algorithm:

1. Set the peak range parameter 3 (e.g. 3 ¼ 0.2)
2. Generate W ˛ [W(min), W(max)] and ln_C ˛ [lnC(min), lnC(max)]
3. Calculate ‘unquenched’ data JTL(bi,T) ¼ J(bi,T)/h(C,W,T) where bi

is the i-th heating rate
4. For each peak JTL(bi,T) find peak position parameters TðmaxÞ

TL;bi
and

JðmaxÞ
TL;bi

¼ JTLðbi; T
ðmaxÞ
TL;bi

Þ
5. For each peak JTL(bi,T) calculate peak range parameters Tð1ÞTL;bi

and
Tð2ÞTL;bi

defined as follows: JTLðbi; T
ð1Þ
TL;bi
Þ ¼ 3JðmaxÞ

TL;bi
¼ JTLðbi; T

ð2Þ
TL;bi
Þ

with Tð1ÞTL;bi
< TðmaxÞ

TL;bi
< Tð2ÞTL;bi

6. Calculate ‘unquenched peak areas’ Si ¼
R T ð2Þ

TL;bi

T ð1Þ
TL;bi

JTLðbi; TÞdT for
each peak

7. Calculate the mean area S ¼ ð1=NÞ
PN

i¼1 Si and the relative
deviation

sRS ¼
1

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NðN � 1Þ
XN

i¼1

ðSi � SÞ2
vuut

8. If sRS belongs to the set of 100 best-fit values (with lowest sRS)
then store the data

9. Go to step 2; repeat Nloop times
10. Estimate the final values as an average of the 10 best-fit results.

The idea of this method is simple. The algorithm tries to find
appropriate values of the quenching parameters, by guessing a pair
(C,W), where C ¼ exp(ln_C) (in step 2), then calculating
‘unquenched’ data (steps 3–5) and finally comparing the areas
under ‘unquenched’ TL peaks measured for various heating rates
(in step 7). For appropriately guessed parameters, the areas for
different heating rates should be the same. Hence, the relative area
deviation sRS is expected to be close to zero. The accuracy of this
method increases with increasing the number of trials Nloop, i.e. the
number of loops (steps 2–9) in which the random parameters are
generated, and narrowing the range of acceptable parameters
[W(min), W(max)] and [lnC(min), lnC(max)]. In practical applications, the
calculations should be repeated several times with decreasing
range of quenching parameters. Typically, we start with the most
physically acceptable ranges [W(min), W(max)] and [lnC(min), lnC(max)].
In our calculations Nloop varied from 104 to 107, depending on the
assumed range of parameters.

3. Testing the hypothesis

The algorithm presented above is based on the hypothesis that
the integral S3,b (3) does not depend on the heating rate b. This
assumption is not obvious. Therefore we have to check its validity
numerically. For this purpose, let us consider the most popular
simple trap model (STM) (see Chen and McKeever, 1997):

_n ¼ nnexp
�
�E
kT

�
� ncAðN � nÞ; (6a)

� _m ¼ Bmnc; (6b)

m ¼ nþ nc þM; (6c)

where N, n, and m denote the concentrations of trap states,
electrons trapped in ‘active’ traps and holes trapped in recombi-
nation centers, respectively. M stands for the number of electrons in
the thermally disconnected traps (deep traps). A and B stand for the
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Fig. 1. Set of TL glow curves calculated with different heating rates from 0.01 to 20 K/s
without (solid lines) and with (dotted lines) thermal quenching. The TL is given in
photon-counts/K.
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